\(\int \frac {(c x)^{-1-\frac {3 n}{2}}}{a+b x^n} \, dx\) [665]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 100 \[ \int \frac {(c x)^{-1-\frac {3 n}{2}}}{a+b x^n} \, dx=-\frac {2 (c x)^{-3 n/2}}{3 a c n}+\frac {2 b x^n (c x)^{-3 n/2}}{a^2 c n}-\frac {2 b^{3/2} x^{3 n/2} (c x)^{-3 n/2} \arctan \left (\frac {\sqrt {a} x^{-n/2}}{\sqrt {b}}\right )}{a^{5/2} c n} \] Output:

-2/3/a/c/n/((c*x)^(3/2*n))+2*b*x^n/a^2/c/n/((c*x)^(3/2*n))-2*b^(3/2)*x^(3/ 
2*n)*arctan(a^(1/2)/b^(1/2)/(x^(1/2*n)))/a^(5/2)/c/n/((c*x)^(3/2*n))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.01 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.39 \[ \int \frac {(c x)^{-1-\frac {3 n}{2}}}{a+b x^n} \, dx=-\frac {2 x (c x)^{-1-\frac {3 n}{2}} \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},-\frac {b x^n}{a}\right )}{3 a n} \] Input:

Integrate[(c*x)^(-1 - (3*n)/2)/(a + b*x^n),x]
 

Output:

(-2*x*(c*x)^(-1 - (3*n)/2)*Hypergeometric2F1[-3/2, 1, -1/2, -((b*x^n)/a)]) 
/(3*a*n)
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.90, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {887, 886, 868, 772, 262, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c x)^{-\frac {3 n}{2}-1}}{a+b x^n} \, dx\)

\(\Big \downarrow \) 887

\(\displaystyle \frac {x^{3 n/2} (c x)^{-3 n/2} \int \frac {x^{-\frac {3 n}{2}-1}}{b x^n+a}dx}{c}\)

\(\Big \downarrow \) 886

\(\displaystyle \frac {x^{3 n/2} (c x)^{-3 n/2} \left (-\frac {b \int \frac {x^{-\frac {n}{2}-1}}{b x^n+a}dx}{a}-\frac {2 x^{-3 n/2}}{3 a n}\right )}{c}\)

\(\Big \downarrow \) 868

\(\displaystyle \frac {x^{3 n/2} (c x)^{-3 n/2} \left (\frac {2 b \int \frac {1}{b x^n+a}dx^{-n/2}}{a n}-\frac {2 x^{-3 n/2}}{3 a n}\right )}{c}\)

\(\Big \downarrow \) 772

\(\displaystyle \frac {x^{3 n/2} (c x)^{-3 n/2} \left (\frac {2 b \int \frac {x^{-n}}{a x^{-n}+b}dx^{-n/2}}{a n}-\frac {2 x^{-3 n/2}}{3 a n}\right )}{c}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {x^{3 n/2} (c x)^{-3 n/2} \left (\frac {2 b \left (\frac {x^{-n/2}}{a}-\frac {b \int \frac {1}{a x^{-n}+b}dx^{-n/2}}{a}\right )}{a n}-\frac {2 x^{-3 n/2}}{3 a n}\right )}{c}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {x^{3 n/2} (c x)^{-3 n/2} \left (\frac {2 b \left (\frac {x^{-n/2}}{a}-\frac {\sqrt {b} \arctan \left (\frac {\sqrt {a} x^{-n/2}}{\sqrt {b}}\right )}{a^{3/2}}\right )}{a n}-\frac {2 x^{-3 n/2}}{3 a n}\right )}{c}\)

Input:

Int[(c*x)^(-1 - (3*n)/2)/(a + b*x^n),x]
 

Output:

(x^((3*n)/2)*(-2/(3*a*n*x^((3*n)/2)) + (2*b*(1/(a*x^(n/2)) - (Sqrt[b]*ArcT 
an[Sqrt[a]/(Sqrt[b]*x^(n/2))])/a^(3/2)))/(a*n)))/(c*(c*x)^((3*n)/2))
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 772
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(n*p)*(b + a/x^n)^p, 
x] /; FreeQ[{a, b}, x] && ILtQ[n, 0] && IntegerQ[p]
 

rule 868
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) 
 Subst[Int[(a + b*x^Simplify[n/(m + 1)])^p, x], x, x^(m + 1)], x] /; FreeQ[ 
{a, b, m, n, p}, x] && IntegerQ[Simplify[n/(m + 1)]] &&  !IntegerQ[n]
 

rule 886
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[x^(m + 1)/(a*(m + 
 1)), x] - Simp[b/a   Int[x^Simplify[m + n]/(a + b*x^n), x], x] /; FreeQ[{a 
, b, m, n}, x] && FractionQ[Simplify[(m + 1)/n]] && SumSimplerQ[m, n]
 

rule 887
Int[((c_)*(x_))^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[c^IntPart[ 
m]*((c*x)^FracPart[m]/x^FracPart[m])   Int[x^m/(a + b*x^n), x], x] /; FreeQ 
[{a, b, c, m, n}, x] && FractionQ[Simplify[(m + 1)/n]] && (SumSimplerQ[m, n 
] || SumSimplerQ[m, -n])
 
Maple [F]

\[\int \frac {\left (c x \right )^{-1-\frac {3 n}{2}}}{a +b \,x^{n}}d x\]

Input:

int((c*x)^(-1-3/2*n)/(a+b*x^n),x)
 

Output:

int((c*x)^(-1-3/2*n)/(a+b*x^n),x)
 

Fricas [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 504, normalized size of antiderivative = 5.04 \[ \int \frac {(c x)^{-1-\frac {3 n}{2}}}{a+b x^n} \, dx =\text {Too large to display} \] Input:

integrate((c*x)^(-1-3/2*n)/(a+b*x^n),x, algorithm="fricas")
 

Output:

[1/3*(3*b*c^(-n - 2/3)*sqrt(-b*c^(-n - 2/3)/a)*log(-(2*a^2*b*c^(-n - 2/3)* 
x^(4/3)*e^(-2/3*(3*n + 2)*log(c) - 2/3*(3*n + 2)*log(x)) - a^3*x^2*e^(-(3* 
n + 2)*log(c) - (3*n + 2)*log(x)) - 2*a*b^2*c^(-2*n - 4/3)*x^(2/3)*e^(-1/3 
*(3*n + 2)*log(c) - 1/3*(3*n + 2)*log(x)) + b^3*c^(-3*n - 2) - 2*(a^2*b*c^ 
(-n - 2/3)*x*e^(-1/2*(3*n + 2)*log(c) - 1/2*(3*n + 2)*log(x)) - a^3*x^(5/3 
)*e^(-5/6*(3*n + 2)*log(c) - 5/6*(3*n + 2)*log(x)) - a*b^2*c^(-2*n - 4/3)* 
x^(1/3)*e^(-1/6*(3*n + 2)*log(c) - 1/6*(3*n + 2)*log(x)))*sqrt(-b*c^(-n - 
2/3)/a))/(a^3*x^2*e^(-(3*n + 2)*log(c) - (3*n + 2)*log(x)) + b^3*c^(-3*n - 
 2))) + 6*b*c^(-n - 2/3)*x^(1/3)*e^(-1/6*(3*n + 2)*log(c) - 1/6*(3*n + 2)* 
log(x)) - 2*a*x*e^(-1/2*(3*n + 2)*log(c) - 1/2*(3*n + 2)*log(x)))/(a^2*n), 
 -2/3*(3*b*c^(-n - 2/3)*sqrt(b*c^(-n - 2/3)/a)*arctan(a*sqrt(b*c^(-n - 2/3 
)/a)*x^(1/3)*e^(-1/6*(3*n + 2)*log(c) - 1/6*(3*n + 2)*log(x))/(b*c^(-n - 2 
/3))) - 3*b*c^(-n - 2/3)*x^(1/3)*e^(-1/6*(3*n + 2)*log(c) - 1/6*(3*n + 2)* 
log(x)) + a*x*e^(-1/2*(3*n + 2)*log(c) - 1/2*(3*n + 2)*log(x)))/(a^2*n)]
 

Sympy [A] (verification not implemented)

Time = 1.33 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.87 \[ \int \frac {(c x)^{-1-\frac {3 n}{2}}}{a+b x^n} \, dx=- \frac {2 c^{- \frac {3 n}{2} - 1} x^{- \frac {3 n}{2}}}{3 a n} + \frac {2 b c^{- \frac {3 n}{2} - 1} x^{- \frac {n}{2}}}{a^{2} n} + \frac {2 b^{\frac {3}{2}} c^{- \frac {3 n}{2} - 1} \operatorname {atan}{\left (\frac {\sqrt {b} x^{\frac {n}{2}}}{\sqrt {a}} \right )}}{a^{\frac {5}{2}} n} \] Input:

integrate((c*x)**(-1-3/2*n)/(a+b*x**n),x)
 

Output:

-2*c**(-3*n/2 - 1)/(3*a*n*x**(3*n/2)) + 2*b*c**(-3*n/2 - 1)/(a**2*n*x**(n/ 
2)) + 2*b**(3/2)*c**(-3*n/2 - 1)*atan(sqrt(b)*x**(n/2)/sqrt(a))/(a**(5/2)* 
n)
 

Maxima [F]

\[ \int \frac {(c x)^{-1-\frac {3 n}{2}}}{a+b x^n} \, dx=\int { \frac {\left (c x\right )^{-\frac {3}{2} \, n - 1}}{b x^{n} + a} \,d x } \] Input:

integrate((c*x)^(-1-3/2*n)/(a+b*x^n),x, algorithm="maxima")
 

Output:

b^2*integrate(x^(1/2*n)/(a^2*b*c^(3/2*n + 1)*x*x^n + a^3*c^(3/2*n + 1)*x), 
 x) + 2/3*(3*b*x^n - a)*c^(-3/2*n - 1)/(a^2*n*x^(3/2*n))
 

Giac [F]

\[ \int \frac {(c x)^{-1-\frac {3 n}{2}}}{a+b x^n} \, dx=\int { \frac {\left (c x\right )^{-\frac {3}{2} \, n - 1}}{b x^{n} + a} \,d x } \] Input:

integrate((c*x)^(-1-3/2*n)/(a+b*x^n),x, algorithm="giac")
 

Output:

integrate((c*x)^(-3/2*n - 1)/(b*x^n + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(c x)^{-1-\frac {3 n}{2}}}{a+b x^n} \, dx=\int \frac {1}{{\left (c\,x\right )}^{\frac {3\,n}{2}+1}\,\left (a+b\,x^n\right )} \,d x \] Input:

int(1/((c*x)^((3*n)/2 + 1)*(a + b*x^n)),x)
 

Output:

int(1/((c*x)^((3*n)/2 + 1)*(a + b*x^n)), x)
 

Reduce [F]

\[ \int \frac {(c x)^{-1-\frac {3 n}{2}}}{a+b x^n} \, dx=\frac {\int \frac {1}{x^{\frac {5 n}{2}} b x +x^{\frac {3 n}{2}} a x}d x}{c^{\frac {3 n}{2}} c} \] Input:

int((c*x)^(-1-3/2*n)/(a+b*x^n),x)
                                                                                    
                                                                                    
 

Output:

int(1/(x**((5*n)/2)*b*x + x**((3*n)/2)*a*x),x)/(c**((3*n)/2)*c)