\(\int \frac {1}{(a+b x^3)^{4/3} (c+d x^3)} \, dx\) [142]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 179 \[ \int \frac {1}{\left (a+b x^3\right )^{4/3} \left (c+d x^3\right )} \, dx=\frac {b x}{a (b c-a d) \sqrt [3]{a+b x^3}}-\frac {d \arctan \left (\frac {1+\frac {2 \sqrt [3]{b c-a d} x}{\sqrt [3]{c} \sqrt [3]{a+b x^3}}}{\sqrt {3}}\right )}{\sqrt {3} c^{2/3} (b c-a d)^{4/3}}-\frac {d \log \left (c+d x^3\right )}{6 c^{2/3} (b c-a d)^{4/3}}+\frac {d \log \left (\frac {\sqrt [3]{b c-a d} x}{\sqrt [3]{c}}-\sqrt [3]{a+b x^3}\right )}{2 c^{2/3} (b c-a d)^{4/3}} \] Output:

b*x/a/(-a*d+b*c)/(b*x^3+a)^(1/3)-1/3*d*arctan(1/3*(1+2*(-a*d+b*c)^(1/3)*x/ 
c^(1/3)/(b*x^3+a)^(1/3))*3^(1/2))*3^(1/2)/c^(2/3)/(-a*d+b*c)^(4/3)-1/6*d*l 
n(d*x^3+c)/c^(2/3)/(-a*d+b*c)^(4/3)+1/2*d*ln((-a*d+b*c)^(1/3)*x/c^(1/3)-(b 
*x^3+a)^(1/3))/c^(2/3)/(-a*d+b*c)^(4/3)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.58 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.83 \[ \int \frac {1}{\left (a+b x^3\right )^{4/3} \left (c+d x^3\right )} \, dx=\frac {1}{12} \left (\frac {12 b x}{\left (a b c-a^2 d\right ) \sqrt [3]{a+b x^3}}+\frac {2 \sqrt {-6+6 i \sqrt {3}} d \arctan \left (\frac {3 \sqrt [3]{b c-a d} x}{\sqrt {3} \sqrt [3]{b c-a d} x-\left (3 i+\sqrt {3}\right ) \sqrt [3]{c} \sqrt [3]{a+b x^3}}\right )}{c^{2/3} (b c-a d)^{4/3}}-\frac {2 i \left (-i+\sqrt {3}\right ) d \log \left (2 \sqrt [3]{b c-a d} x+\left (1+i \sqrt {3}\right ) \sqrt [3]{c} \sqrt [3]{a+b x^3}\right )}{c^{2/3} (b c-a d)^{4/3}}+\frac {\left (d+i \sqrt {3} d\right ) \log \left (2 (b c-a d)^{2/3} x^2+\left (-1-i \sqrt {3}\right ) \sqrt [3]{c} \sqrt [3]{b c-a d} x \sqrt [3]{a+b x^3}+i \left (i+\sqrt {3}\right ) c^{2/3} \left (a+b x^3\right )^{2/3}\right )}{c^{2/3} (b c-a d)^{4/3}}\right ) \] Input:

Integrate[1/((a + b*x^3)^(4/3)*(c + d*x^3)),x]
 

Output:

((12*b*x)/((a*b*c - a^2*d)*(a + b*x^3)^(1/3)) + (2*Sqrt[-6 + (6*I)*Sqrt[3] 
]*d*ArcTan[(3*(b*c - a*d)^(1/3)*x)/(Sqrt[3]*(b*c - a*d)^(1/3)*x - (3*I + S 
qrt[3])*c^(1/3)*(a + b*x^3)^(1/3))])/(c^(2/3)*(b*c - a*d)^(4/3)) - ((2*I)* 
(-I + Sqrt[3])*d*Log[2*(b*c - a*d)^(1/3)*x + (1 + I*Sqrt[3])*c^(1/3)*(a + 
b*x^3)^(1/3)])/(c^(2/3)*(b*c - a*d)^(4/3)) + ((d + I*Sqrt[3]*d)*Log[2*(b*c 
 - a*d)^(2/3)*x^2 + (-1 - I*Sqrt[3])*c^(1/3)*(b*c - a*d)^(1/3)*x*(a + b*x^ 
3)^(1/3) + I*(I + Sqrt[3])*c^(2/3)*(a + b*x^3)^(2/3)])/(c^(2/3)*(b*c - a*d 
)^(4/3)))/12
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.06, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {907, 901}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x^3\right )^{4/3} \left (c+d x^3\right )} \, dx\)

\(\Big \downarrow \) 907

\(\displaystyle \frac {b x}{a \sqrt [3]{a+b x^3} (b c-a d)}-\frac {d \int \frac {1}{\sqrt [3]{b x^3+a} \left (d x^3+c\right )}dx}{b c-a d}\)

\(\Big \downarrow \) 901

\(\displaystyle \frac {b x}{a \sqrt [3]{a+b x^3} (b c-a d)}-\frac {d \left (\frac {\arctan \left (\frac {\frac {2 x \sqrt [3]{b c-a d}}{\sqrt [3]{c} \sqrt [3]{a+b x^3}}+1}{\sqrt {3}}\right )}{\sqrt {3} c^{2/3} \sqrt [3]{b c-a d}}+\frac {\log \left (c+d x^3\right )}{6 c^{2/3} \sqrt [3]{b c-a d}}-\frac {\log \left (\frac {x \sqrt [3]{b c-a d}}{\sqrt [3]{c}}-\sqrt [3]{a+b x^3}\right )}{2 c^{2/3} \sqrt [3]{b c-a d}}\right )}{b c-a d}\)

Input:

Int[1/((a + b*x^3)^(4/3)*(c + d*x^3)),x]
 

Output:

(b*x)/(a*(b*c - a*d)*(a + b*x^3)^(1/3)) - (d*(ArcTan[(1 + (2*(b*c - a*d)^( 
1/3)*x)/(c^(1/3)*(a + b*x^3)^(1/3)))/Sqrt[3]]/(Sqrt[3]*c^(2/3)*(b*c - a*d) 
^(1/3)) + Log[c + d*x^3]/(6*c^(2/3)*(b*c - a*d)^(1/3)) - Log[((b*c - a*d)^ 
(1/3)*x)/c^(1/3) - (a + b*x^3)^(1/3)]/(2*c^(2/3)*(b*c - a*d)^(1/3))))/(b*c 
 - a*d)
 

Defintions of rubi rules used

rule 901
Int[1/(((a_) + (b_.)*(x_)^3)^(1/3)*((c_) + (d_.)*(x_)^3)), x_Symbol] :> Wit 
h[{q = Rt[(b*c - a*d)/c, 3]}, Simp[ArcTan[(1 + (2*q*x)/(a + b*x^3)^(1/3))/S 
qrt[3]]/(Sqrt[3]*c*q), x] + (-Simp[Log[q*x - (a + b*x^3)^(1/3)]/(2*c*q), x] 
 + Simp[Log[c + d*x^3]/(6*c*q), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0]
 

rule 907
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[(-b)*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - 
 a*d))), x] + Simp[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a*d)) 
  Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q} 
, x] && NeQ[b*c - a*d, 0] && EqQ[n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  ! 
LtQ[q, -1]) && NeQ[p, -1]
 
Maple [A] (verified)

Time = 1.16 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.36

method result size
pseudoelliptic \(\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\left (\frac {a d -b c}{c}\right )^{\frac {1}{3}} x -2 \left (b \,x^{3}+a \right )^{\frac {1}{3}}\right )}{3 \left (\frac {a d -b c}{c}\right )^{\frac {1}{3}} x}\right ) a d \left (b \,x^{3}+a \right )^{\frac {1}{3}}+\ln \left (\frac {\left (\frac {a d -b c}{c}\right )^{\frac {1}{3}} x +\left (b \,x^{3}+a \right )^{\frac {1}{3}}}{x}\right ) a d \left (b \,x^{3}+a \right )^{\frac {1}{3}}-\frac {\ln \left (\frac {\left (\frac {a d -b c}{c}\right )^{\frac {2}{3}} x^{2}-\left (\frac {a d -b c}{c}\right )^{\frac {1}{3}} \left (b \,x^{3}+a \right )^{\frac {1}{3}} x +\left (b \,x^{3}+a \right )^{\frac {2}{3}}}{x^{2}}\right ) a d \left (b \,x^{3}+a \right )^{\frac {1}{3}}}{2}-3 b x c \left (\frac {a d -b c}{c}\right )^{\frac {1}{3}}}{3 \left (\frac {a d -b c}{c}\right )^{\frac {1}{3}} \left (b \,x^{3}+a \right )^{\frac {1}{3}} \left (a d -b c \right ) c a}\) \(243\)

Input:

int(1/(b*x^3+a)^(4/3)/(d*x^3+c),x,method=_RETURNVERBOSE)
 

Output:

1/3/((a*d-b*c)/c)^(1/3)/(b*x^3+a)^(1/3)*(3^(1/2)*arctan(1/3*3^(1/2)*(((a*d 
-b*c)/c)^(1/3)*x-2*(b*x^3+a)^(1/3))/((a*d-b*c)/c)^(1/3)/x)*a*d*(b*x^3+a)^( 
1/3)+ln((((a*d-b*c)/c)^(1/3)*x+(b*x^3+a)^(1/3))/x)*a*d*(b*x^3+a)^(1/3)-1/2 
*ln((((a*d-b*c)/c)^(2/3)*x^2-((a*d-b*c)/c)^(1/3)*(b*x^3+a)^(1/3)*x+(b*x^3+ 
a)^(2/3))/x^2)*a*d*(b*x^3+a)^(1/3)-3*b*x*c*((a*d-b*c)/c)^(1/3))/(a*d-b*c)/ 
c/a
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^3\right )^{4/3} \left (c+d x^3\right )} \, dx=\text {Timed out} \] Input:

integrate(1/(b*x^3+a)^(4/3)/(d*x^3+c),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{4/3} \left (c+d x^3\right )} \, dx=\int \frac {1}{\left (a + b x^{3}\right )^{\frac {4}{3}} \left (c + d x^{3}\right )}\, dx \] Input:

integrate(1/(b*x**3+a)**(4/3)/(d*x**3+c),x)
 

Output:

Integral(1/((a + b*x**3)**(4/3)*(c + d*x**3)), x)
 

Maxima [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{4/3} \left (c+d x^3\right )} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{\frac {4}{3}} {\left (d x^{3} + c\right )}} \,d x } \] Input:

integrate(1/(b*x^3+a)^(4/3)/(d*x^3+c),x, algorithm="maxima")
 

Output:

integrate(1/((b*x^3 + a)^(4/3)*(d*x^3 + c)), x)
 

Giac [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{4/3} \left (c+d x^3\right )} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{\frac {4}{3}} {\left (d x^{3} + c\right )}} \,d x } \] Input:

integrate(1/(b*x^3+a)^(4/3)/(d*x^3+c),x, algorithm="giac")
 

Output:

integrate(1/((b*x^3 + a)^(4/3)*(d*x^3 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^3\right )^{4/3} \left (c+d x^3\right )} \, dx=\int \frac {1}{{\left (b\,x^3+a\right )}^{4/3}\,\left (d\,x^3+c\right )} \,d x \] Input:

int(1/((a + b*x^3)^(4/3)*(c + d*x^3)),x)
 

Output:

int(1/((a + b*x^3)^(4/3)*(c + d*x^3)), x)
 

Reduce [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{4/3} \left (c+d x^3\right )} \, dx=\int \frac {1}{\left (b \,x^{3}+a \right )^{\frac {1}{3}} a c +\left (b \,x^{3}+a \right )^{\frac {1}{3}} a d \,x^{3}+\left (b \,x^{3}+a \right )^{\frac {1}{3}} b c \,x^{3}+\left (b \,x^{3}+a \right )^{\frac {1}{3}} b d \,x^{6}}d x \] Input:

int(1/(b*x^3+a)^(4/3)/(d*x^3+c),x)
 

Output:

int(1/((a + b*x**3)**(1/3)*a*c + (a + b*x**3)**(1/3)*a*d*x**3 + (a + b*x** 
3)**(1/3)*b*c*x**3 + (a + b*x**3)**(1/3)*b*d*x**6),x)