\(\int \frac {\sqrt [4]{c+d x^n}}{(a+b x^n)^{15/4}} \, dx\) [1]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F(-2)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 88 \[ \int \frac {\sqrt [4]{c+d x^n}}{\left (a+b x^n\right )^{15/4}} \, dx=\frac {x \left (1+\frac {b x^n}{a}\right )^{3/4} \sqrt [4]{c+d x^n} \operatorname {AppellF1}\left (\frac {1}{n},\frac {15}{4},-\frac {1}{4},1+\frac {1}{n},-\frac {b x^n}{a},-\frac {d x^n}{c}\right )}{a^3 \left (a+b x^n\right )^{3/4} \sqrt [4]{1+\frac {d x^n}{c}}} \] Output:

x*(1+b*x^n/a)^(3/4)*(c+d*x^n)^(1/4)*AppellF1(1/n,15/4,-1/4,1+1/n,-b*x^n/a, 
-d*x^n/c)/a^3/(a+b*x^n)^(3/4)/(1+d*x^n/c)^(1/4)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1071\) vs. \(2(88)=176\).

Time = 5.93 (sec) , antiderivative size = 1071, normalized size of antiderivative = 12.17 \[ \int \frac {\sqrt [4]{c+d x^n}}{\left (a+b x^n\right )^{15/4}} \, dx =\text {Too large to display} \] Input:

Integrate[(c + d*x^n)^(1/4)/(a + b*x^n)^(15/4),x]
 

Output:

(2*x*((d*(-2 + n)*(a*b*c*d*(-32 + 136*n - 143*n^2) + 4*a^2*d^2*(4 - 16*n + 
 15*n^2) + b^2*c^2*(16 - 72*n + 77*n^2))*x^n*(1 + (b*x^n)/a)^(3/4)*(1 + (d 
*x^n)/c)^(3/4)*AppellF1[1 + n^(-1), 3/4, 3/4, 2 + n^(-1), -((b*x^n)/a), -( 
(d*x^n)/c)])/(1 + n) + (6*a*d*n*x^n*(c + d*x^n)*(a^4*d^2*(16 - 76*n + 111* 
n^2) + b^4*c^2*(16 - 72*n + 77*n^2)*x^(2*n) + 2*a^3*b*d*(-4*c*(4 - 20*n + 
31*n^2) + d*(16 - 70*n + 75*n^2)*x^n) - a*b^3*c*x^n*(c*(-32 + 156*n - 187* 
n^2) + d*(32 - 136*n + 143*n^2)*x^n) + a^2*b^2*(c^2*(16 - 84*n + 131*n^2) 
- c*d*(64 - 296*n + 349*n^2)*x^n + 4*d^2*(4 - 16*n + 15*n^2)*x^(2*n)))*App 
ellF1[1 + n^(-1), 3/4, 7/4, 2 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)] + 6*b* 
c*n*x^n*(c + d*x^n)*(a^4*d^2*(16 - 76*n + 111*n^2) + b^4*c^2*(16 - 72*n + 
77*n^2)*x^(2*n) + 2*a^3*b*d*(-4*c*(4 - 20*n + 31*n^2) + d*(16 - 70*n + 75* 
n^2)*x^n) - a*b^3*c*x^n*(c*(-32 + 156*n - 187*n^2) + d*(32 - 136*n + 143*n 
^2)*x^n) + a^2*b^2*(c^2*(16 - 84*n + 131*n^2) - c*d*(64 - 296*n + 349*n^2) 
*x^n + 4*d^2*(4 - 16*n + 15*n^2)*x^(2*n)))*AppellF1[1 + n^(-1), 7/4, 3/4, 
2 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)] - 2*a*c*(1 + n)*(b^4*c^2*(16 - 72* 
n + 77*n^2)*x^(2*n)*(3*c*n + 4*d*x^n) + a^4*d^2*(231*c*n^3 + 4*d*(16 - 76* 
n + 111*n^2)*x^n) + 2*a^3*b*d*(-231*c^2*n^3 + c*d*(-64 + 344*n - 640*n^2 + 
 231*n^3)*x^n + 4*d^2*(16 - 70*n + 75*n^2)*x^(2*n)) - 2*a*b^3*c*x^n*(-3*c^ 
2*n*(8 - 50*n + 77*n^2) + c*d*(-64 + 360*n - 584*n^2 + 231*n^3)*x^n + 2*d^ 
2*(32 - 136*n + 143*n^2)*x^(2*n)) + a^2*b^2*(231*c^3*n^3 - 4*c^2*d*(-16...
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {937, 937, 936}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{c+d x^n}}{\left (a+b x^n\right )^{15/4}} \, dx\)

\(\Big \downarrow \) 937

\(\displaystyle \frac {\left (\frac {b x^n}{a}+1\right )^{3/4} \int \frac {\sqrt [4]{d x^n+c}}{\left (\frac {b x^n}{a}+1\right )^{15/4}}dx}{a^3 \left (a+b x^n\right )^{3/4}}\)

\(\Big \downarrow \) 937

\(\displaystyle \frac {\left (\frac {b x^n}{a}+1\right )^{3/4} \sqrt [4]{c+d x^n} \int \frac {\sqrt [4]{\frac {d x^n}{c}+1}}{\left (\frac {b x^n}{a}+1\right )^{15/4}}dx}{a^3 \left (a+b x^n\right )^{3/4} \sqrt [4]{\frac {d x^n}{c}+1}}\)

\(\Big \downarrow \) 936

\(\displaystyle \frac {x \left (\frac {b x^n}{a}+1\right )^{3/4} \sqrt [4]{c+d x^n} \operatorname {AppellF1}\left (\frac {1}{n},\frac {15}{4},-\frac {1}{4},1+\frac {1}{n},-\frac {b x^n}{a},-\frac {d x^n}{c}\right )}{a^3 \left (a+b x^n\right )^{3/4} \sqrt [4]{\frac {d x^n}{c}+1}}\)

Input:

Int[(c + d*x^n)^(1/4)/(a + b*x^n)^(15/4),x]
 

Output:

(x*(1 + (b*x^n)/a)^(3/4)*(c + d*x^n)^(1/4)*AppellF1[n^(-1), 15/4, -1/4, 1 
+ n^(-1), -((b*x^n)/a), -((d*x^n)/c)])/(a^3*(a + b*x^n)^(3/4)*(1 + (d*x^n) 
/c)^(1/4))
 

Defintions of rubi rules used

rule 936
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^p*c^q*x*AppellF1[1/n, -p, -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c) 
], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] 
 && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 937
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]) 
  Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, p, q 
}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [F]

\[\int \frac {\left (c +d \,x^{n}\right )^{\frac {1}{4}}}{\left (a +b \,x^{n}\right )^{\frac {15}{4}}}d x\]

Input:

int((c+d*x^n)^(1/4)/(a+b*x^n)^(15/4),x)
 

Output:

int((c+d*x^n)^(1/4)/(a+b*x^n)^(15/4),x)
 

Fricas [F(-2)]

Exception generated. \[ \int \frac {\sqrt [4]{c+d x^n}}{\left (a+b x^n\right )^{15/4}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((c+d*x^n)^(1/4)/(a+b*x^n)^(15/4),x, algorithm="fricas")
 

Output:

Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{c+d x^n}}{\left (a+b x^n\right )^{15/4}} \, dx=\text {Timed out} \] Input:

integrate((c+d*x**n)**(1/4)/(a+b*x**n)**(15/4),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sqrt [4]{c+d x^n}}{\left (a+b x^n\right )^{15/4}} \, dx=\int { \frac {{\left (d x^{n} + c\right )}^{\frac {1}{4}}}{{\left (b x^{n} + a\right )}^{\frac {15}{4}}} \,d x } \] Input:

integrate((c+d*x^n)^(1/4)/(a+b*x^n)^(15/4),x, algorithm="maxima")
 

Output:

integrate((d*x^n + c)^(1/4)/(b*x^n + a)^(15/4), x)
 

Giac [F]

\[ \int \frac {\sqrt [4]{c+d x^n}}{\left (a+b x^n\right )^{15/4}} \, dx=\int { \frac {{\left (d x^{n} + c\right )}^{\frac {1}{4}}}{{\left (b x^{n} + a\right )}^{\frac {15}{4}}} \,d x } \] Input:

integrate((c+d*x^n)^(1/4)/(a+b*x^n)^(15/4),x, algorithm="giac")
 

Output:

integrate((d*x^n + c)^(1/4)/(b*x^n + a)^(15/4), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{c+d x^n}}{\left (a+b x^n\right )^{15/4}} \, dx=\int \frac {{\left (c+d\,x^n\right )}^{1/4}}{{\left (a+b\,x^n\right )}^{15/4}} \,d x \] Input:

int((c + d*x^n)^(1/4)/(a + b*x^n)^(15/4),x)
 

Output:

int((c + d*x^n)^(1/4)/(a + b*x^n)^(15/4), x)
 

Reduce [F]

\[ \int \frac {\sqrt [4]{c+d x^n}}{\left (a+b x^n\right )^{15/4}} \, dx=\int \frac {\left (x^{n} d +c \right )^{\frac {1}{4}}}{x^{3 n} \left (x^{n} b +a \right )^{\frac {3}{4}} b^{3}+3 x^{2 n} \left (x^{n} b +a \right )^{\frac {3}{4}} a \,b^{2}+3 x^{n} \left (x^{n} b +a \right )^{\frac {3}{4}} a^{2} b +\left (x^{n} b +a \right )^{\frac {3}{4}} a^{3}}d x \] Input:

int((c+d*x^n)^(1/4)/(a+b*x^n)^(15/4),x)
 

Output:

int((x**n*d + c)**(1/4)/(x**(3*n)*(x**n*b + a)**(3/4)*b**3 + 3*x**(2*n)*(x 
**n*b + a)**(3/4)*a*b**2 + 3*x**n*(x**n*b + a)**(3/4)*a**2*b + (x**n*b + a 
)**(3/4)*a**3),x)