\(\int \frac {c+d x^3}{a+b x^3} \, dx\) [32]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 145 \[ \int \frac {c+d x^3}{a+b x^3} \, dx=\frac {d x}{b}-\frac {(b c-a d) \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} b^{4/3}}+\frac {(b c-a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} b^{4/3}}-\frac {(b c-a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} b^{4/3}} \] Output:

d*x/b-1/3*(-a*d+b*c)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)*3^(1/2)/a^(1/3))*3^( 
1/2)/a^(2/3)/b^(4/3)+1/3*(-a*d+b*c)*ln(a^(1/3)+b^(1/3)*x)/a^(2/3)/b^(4/3)- 
1/6*(-a*d+b*c)*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^(2/3)/b^(4/3)
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.89 \[ \int \frac {c+d x^3}{a+b x^3} \, dx=\frac {6 a^{2/3} \sqrt [3]{b} d x-2 \sqrt {3} (b c-a d) \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )+2 (b c-a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )-(b c-a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} b^{4/3}} \] Input:

Integrate[(c + d*x^3)/(a + b*x^3),x]
 

Output:

(6*a^(2/3)*b^(1/3)*d*x - 2*Sqrt[3]*(b*c - a*d)*ArcTan[(1 - (2*b^(1/3)*x)/a 
^(1/3))/Sqrt[3]] + 2*(b*c - a*d)*Log[a^(1/3) + b^(1/3)*x] - (b*c - a*d)*Lo 
g[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(2/3)*b^(4/3))
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.90, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {913, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x^3}{a+b x^3} \, dx\)

\(\Big \downarrow \) 913

\(\displaystyle \frac {(b c-a d) \int \frac {1}{b x^3+a}dx}{b}+\frac {d x}{b}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {(b c-a d) \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 a^{2/3}}\right )}{b}+\frac {d x}{b}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {(b c-a d) \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b}+\frac {d x}{b}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b}+\frac {d x}{b}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b}+\frac {d x}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b}+\frac {d x}{b}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b}+\frac {d x}{b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b}+\frac {d x}{b}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {(b c-a d) \left (\frac {-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b}+\frac {d x}{b}\)

Input:

Int[(c + d*x^3)/(a + b*x^3),x]
 

Output:

(d*x)/b + ((b*c - a*d)*(Log[a^(1/3) + b^(1/3)*x]/(3*a^(2/3)*b^(1/3)) + (-( 
(Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/b^(1/3)) - Log[a^(2/ 
3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(2*b^(1/3)))/(3*a^(2/3))))/b
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 913
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Si 
mp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(p + 1) + 1))), x] - Simp[(a*d - b*c*(n*( 
p + 1) + 1))/(b*(n*(p + 1) + 1))   Int[(a + b*x^n)^p, x], x] /; FreeQ[{a, b 
, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.80 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.29

method result size
risch \(\frac {d x}{b}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-a d +b c \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{2}}}{3 b^{2}}\) \(42\)
default \(\frac {d x}{b}+\frac {\left (\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right ) \left (-a d +b c \right )}{b}\) \(110\)

Input:

int((d*x^3+c)/(b*x^3+a),x,method=_RETURNVERBOSE)
 

Output:

d*x/b+1/3/b^2*sum((-a*d+b*c)/_R^2*ln(x-_R),_R=RootOf(_Z^3*b+a))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 390, normalized size of antiderivative = 2.69 \[ \int \frac {c+d x^3}{a+b x^3} \, dx=\left [\frac {6 \, a^{2} b d x - 3 \, \sqrt {\frac {1}{3}} {\left (a b^{2} c - a^{2} b d\right )} \sqrt {\frac {\left (-a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b x^{3} + 3 \, \left (-a^{2} b\right )^{\frac {1}{3}} a x - a^{2} - 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b x^{2} + \left (-a^{2} b\right )^{\frac {2}{3}} x + \left (-a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (-a^{2} b\right )^{\frac {1}{3}}}{b}}}{b x^{3} + a}\right ) - \left (-a^{2} b\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (a b x^{2} - \left (-a^{2} b\right )^{\frac {2}{3}} x - \left (-a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (-a^{2} b\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (a b x + \left (-a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b^{2}}, \frac {6 \, a^{2} b d x + 6 \, \sqrt {\frac {1}{3}} {\left (a b^{2} c - a^{2} b d\right )} \sqrt {-\frac {\left (-a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (-a^{2} b\right )^{\frac {2}{3}} x + \left (-a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (-a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - \left (-a^{2} b\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (a b x^{2} - \left (-a^{2} b\right )^{\frac {2}{3}} x - \left (-a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (-a^{2} b\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (a b x + \left (-a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b^{2}}\right ] \] Input:

integrate((d*x^3+c)/(b*x^3+a),x, algorithm="fricas")
 

Output:

[1/6*(6*a^2*b*d*x - 3*sqrt(1/3)*(a*b^2*c - a^2*b*d)*sqrt((-a^2*b)^(1/3)/b) 
*log((2*a*b*x^3 + 3*(-a^2*b)^(1/3)*a*x - a^2 - 3*sqrt(1/3)*(2*a*b*x^2 + (- 
a^2*b)^(2/3)*x + (-a^2*b)^(1/3)*a)*sqrt((-a^2*b)^(1/3)/b))/(b*x^3 + a)) - 
(-a^2*b)^(2/3)*(b*c - a*d)*log(a*b*x^2 - (-a^2*b)^(2/3)*x - (-a^2*b)^(1/3) 
*a) + 2*(-a^2*b)^(2/3)*(b*c - a*d)*log(a*b*x + (-a^2*b)^(2/3)))/(a^2*b^2), 
 1/6*(6*a^2*b*d*x + 6*sqrt(1/3)*(a*b^2*c - a^2*b*d)*sqrt(-(-a^2*b)^(1/3)/b 
)*arctan(sqrt(1/3)*(2*(-a^2*b)^(2/3)*x + (-a^2*b)^(1/3)*a)*sqrt(-(-a^2*b)^ 
(1/3)/b)/a^2) - (-a^2*b)^(2/3)*(b*c - a*d)*log(a*b*x^2 - (-a^2*b)^(2/3)*x 
- (-a^2*b)^(1/3)*a) + 2*(-a^2*b)^(2/3)*(b*c - a*d)*log(a*b*x + (-a^2*b)^(2 
/3)))/(a^2*b^2)]
 

Sympy [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.49 \[ \int \frac {c+d x^3}{a+b x^3} \, dx=\operatorname {RootSum} {\left (27 t^{3} a^{2} b^{4} + a^{3} d^{3} - 3 a^{2} b c d^{2} + 3 a b^{2} c^{2} d - b^{3} c^{3}, \left ( t \mapsto t \log {\left (- \frac {3 t a b}{a d - b c} + x \right )} \right )\right )} + \frac {d x}{b} \] Input:

integrate((d*x**3+c)/(b*x**3+a),x)
 

Output:

RootSum(27*_t**3*a**2*b**4 + a**3*d**3 - 3*a**2*b*c*d**2 + 3*a*b**2*c**2*d 
 - b**3*c**3, Lambda(_t, _t*log(-3*_t*a*b/(a*d - b*c) + x))) + d*x/b
                                                                                    
                                                                                    
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.88 \[ \int \frac {c+d x^3}{a+b x^3} \, dx=\frac {d x}{b} + \frac {\sqrt {3} {\left (b c - a d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {{\left (b c - a d\right )} \log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {{\left (b c - a d\right )} \log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} \] Input:

integrate((d*x^3+c)/(b*x^3+a),x, algorithm="maxima")
 

Output:

d*x/b + 1/3*sqrt(3)*(b*c - a*d)*arctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/ 
b)^(1/3))/(b^2*(a/b)^(2/3)) - 1/6*(b*c - a*d)*log(x^2 - x*(a/b)^(1/3) + (a 
/b)^(2/3))/(b^2*(a/b)^(2/3)) + 1/3*(b*c - a*d)*log(x + (a/b)^(1/3))/(b^2*( 
a/b)^(2/3))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.92 \[ \int \frac {c+d x^3}{a+b x^3} \, dx=-\frac {\sqrt {3} {\left (b c - a d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, \left (-a b^{2}\right )^{\frac {2}{3}}} - \frac {{\left (b c - a d\right )} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, \left (-a b^{2}\right )^{\frac {2}{3}}} + \frac {d x}{b} - \frac {{\left (b c - a d\right )} \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a b} \] Input:

integrate((d*x^3+c)/(b*x^3+a),x, algorithm="giac")
 

Output:

-1/3*sqrt(3)*(b*c - a*d)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1 
/3))/(-a*b^2)^(2/3) - 1/6*(b*c - a*d)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2 
/3))/(-a*b^2)^(2/3) + d*x/b - 1/3*(b*c - a*d)*(-a/b)^(1/3)*log(abs(x - (-a 
/b)^(1/3)))/(a*b)
 

Mupad [B] (verification not implemented)

Time = 0.63 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.85 \[ \int \frac {c+d x^3}{a+b x^3} \, dx=\frac {d\,x}{b}-\frac {\ln \left (b^{1/3}\,x+a^{1/3}\right )\,\left (a\,d-b\,c\right )}{3\,a^{2/3}\,b^{4/3}}+\frac {\ln \left (a^{1/3}-2\,b^{1/3}\,x+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (a\,d-b\,c\right )}{3\,a^{2/3}\,b^{4/3}}-\frac {\ln \left (2\,b^{1/3}\,x-a^{1/3}+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (a\,d-b\,c\right )}{3\,a^{2/3}\,b^{4/3}} \] Input:

int((c + d*x^3)/(a + b*x^3),x)
 

Output:

(d*x)/b - (log(b^(1/3)*x + a^(1/3))*(a*d - b*c))/(3*a^(2/3)*b^(4/3)) + (lo 
g(3^(1/2)*a^(1/3)*1i - 2*b^(1/3)*x + a^(1/3))*((3^(1/2)*1i)/2 + 1/2)*(a*d 
- b*c))/(3*a^(2/3)*b^(4/3)) - (log(3^(1/2)*a^(1/3)*1i + 2*b^(1/3)*x - a^(1 
/3))*((3^(1/2)*1i)/2 - 1/2)*(a*d - b*c))/(3*a^(2/3)*b^(4/3))
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.10 \[ \int \frac {c+d x^3}{a+b x^3} \, dx=\frac {2 a^{\frac {4}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) d -2 a^{\frac {1}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) b c +a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) d -a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) b c -2 a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) d +2 a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) b c +6 b^{\frac {1}{3}} a d x}{6 b^{\frac {4}{3}} a} \] Input:

int((d*x^3+c)/(b*x^3+a),x)
 

Output:

(2*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt(3)))*a*d 
 - 2*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt(3)))*b 
*c + a**(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)*x + b**(2/3)*x**2)*a*d - a* 
*(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)*x + b**(2/3)*x**2)*b*c - 2*a**(1/3 
)*log(a**(1/3) + b**(1/3)*x)*a*d + 2*a**(1/3)*log(a**(1/3) + b**(1/3)*x)*b 
*c + 6*b**(1/3)*a*d*x)/(6*b**(1/3)*a*b)