\(\int \frac {c+d x^3}{(a+b x^3)^2} \, dx\) [39]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 169 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^2} \, dx=\frac {(b c-a d) x}{3 a b \left (a+b x^3\right )}-\frac {(2 b c+a d) \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{3 \sqrt {3} a^{5/3} b^{4/3}}+\frac {(2 b c+a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{5/3} b^{4/3}}-\frac {(2 b c+a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{5/3} b^{4/3}} \] Output:

1/3*(-a*d+b*c)*x/a/b/(b*x^3+a)-1/9*(a*d+2*b*c)*arctan(1/3*(a^(1/3)-2*b^(1/ 
3)*x)*3^(1/2)/a^(1/3))*3^(1/2)/a^(5/3)/b^(4/3)+1/9*(a*d+2*b*c)*ln(a^(1/3)+ 
b^(1/3)*x)/a^(5/3)/b^(4/3)-1/18*(a*d+2*b*c)*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b 
^(2/3)*x^2)/a^(5/3)/b^(4/3)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.86 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^2} \, dx=\frac {-\frac {6 a^{2/3} \sqrt [3]{b} (-b c+a d) x}{a+b x^3}-2 \sqrt {3} (2 b c+a d) \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )+2 (2 b c+a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )-(2 b c+a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{5/3} b^{4/3}} \] Input:

Integrate[(c + d*x^3)/(a + b*x^3)^2,x]
 

Output:

((-6*a^(2/3)*b^(1/3)*(-(b*c) + a*d)*x)/(a + b*x^3) - 2*Sqrt[3]*(2*b*c + a* 
d)*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]] + 2*(2*b*c + a*d)*Log[a^(1/ 
3) + b^(1/3)*x] - (2*b*c + a*d)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)* 
x^2])/(18*a^(5/3)*b^(4/3))
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.93, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {910, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x^3}{\left (a+b x^3\right )^2} \, dx\)

\(\Big \downarrow \) 910

\(\displaystyle \frac {(a d+2 b c) \int \frac {1}{b x^3+a}dx}{3 a b}+\frac {x (b c-a d)}{3 a b \left (a+b x^3\right )}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {(a d+2 b c) \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 a^{2/3}}\right )}{3 a b}+\frac {x (b c-a d)}{3 a b \left (a+b x^3\right )}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {(a d+2 b c) \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a b}+\frac {x (b c-a d)}{3 a b \left (a+b x^3\right )}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {(a d+2 b c) \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a b}+\frac {x (b c-a d)}{3 a b \left (a+b x^3\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {(a d+2 b c) \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a b}+\frac {x (b c-a d)}{3 a b \left (a+b x^3\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(a d+2 b c) \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a b}+\frac {x (b c-a d)}{3 a b \left (a+b x^3\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {(a d+2 b c) \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a b}+\frac {x (b c-a d)}{3 a b \left (a+b x^3\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {(a d+2 b c) \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a b}+\frac {x (b c-a d)}{3 a b \left (a+b x^3\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {(a d+2 b c) \left (\frac {-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{3 a b}+\frac {x (b c-a d)}{3 a b \left (a+b x^3\right )}\)

Input:

Int[(c + d*x^3)/(a + b*x^3)^2,x]
 

Output:

((b*c - a*d)*x)/(3*a*b*(a + b*x^3)) + ((2*b*c + a*d)*(Log[a^(1/3) + b^(1/3 
)*x]/(3*a^(2/3)*b^(1/3)) + (-((Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/ 
Sqrt[3]])/b^(1/3)) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]/(2*b^( 
1/3)))/(3*a^(2/3))))/(3*a*b)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 910
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Si 
mp[(-(b*c - a*d))*x*((a + b*x^n)^(p + 1)/(a*b*n*(p + 1))), x] - Simp[(a*d - 
 b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1))   Int[(a + b*x^n)^(p + 1), x], x] /; 
FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/ 
n + p, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.79 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.38

method result size
risch \(-\frac {\left (a d -b c \right ) x}{3 b a \left (b \,x^{3}+a \right )}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (a d +2 b c \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{2}}}{9 a \,b^{2}}\) \(65\)
default \(-\frac {\left (a d -b c \right ) x}{3 b a \left (b \,x^{3}+a \right )}+\frac {\left (a d +2 b c \right ) \left (\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right )}{3 a b}\) \(134\)

Input:

int((d*x^3+c)/(b*x^3+a)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/3*(a*d-b*c)/b/a*x/(b*x^3+a)+1/9/a/b^2*sum((a*d+2*b*c)/_R^2*ln(x-_R),_R= 
RootOf(_Z^3*b+a))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 537, normalized size of antiderivative = 3.18 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^2} \, dx=\left [\frac {3 \, \sqrt {\frac {1}{3}} {\left (2 \, a^{2} b^{2} c + a^{3} b d + {\left (2 \, a b^{3} c + a^{2} b^{2} d\right )} x^{3}\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b x^{3} - 3 \, \left (a^{2} b\right )^{\frac {1}{3}} a x - a^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b x^{2} + \left (a^{2} b\right )^{\frac {2}{3}} x - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{b x^{3} + a}\right ) - {\left ({\left (2 \, b^{2} c + a b d\right )} x^{3} + 2 \, a b c + a^{2} d\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac {2}{3}} x + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, {\left ({\left (2 \, b^{2} c + a b d\right )} x^{3} + 2 \, a b c + a^{2} d\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac {2}{3}}\right ) + 6 \, {\left (a^{2} b^{2} c - a^{3} b d\right )} x}{18 \, {\left (a^{3} b^{3} x^{3} + a^{4} b^{2}\right )}}, \frac {6 \, \sqrt {\frac {1}{3}} {\left (2 \, a^{2} b^{2} c + a^{3} b d + {\left (2 \, a b^{3} c + a^{2} b^{2} d\right )} x^{3}\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (a^{2} b\right )^{\frac {2}{3}} x - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - {\left ({\left (2 \, b^{2} c + a b d\right )} x^{3} + 2 \, a b c + a^{2} d\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac {2}{3}} x + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, {\left ({\left (2 \, b^{2} c + a b d\right )} x^{3} + 2 \, a b c + a^{2} d\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac {2}{3}}\right ) + 6 \, {\left (a^{2} b^{2} c - a^{3} b d\right )} x}{18 \, {\left (a^{3} b^{3} x^{3} + a^{4} b^{2}\right )}}\right ] \] Input:

integrate((d*x^3+c)/(b*x^3+a)^2,x, algorithm="fricas")
 

Output:

[1/18*(3*sqrt(1/3)*(2*a^2*b^2*c + a^3*b*d + (2*a*b^3*c + a^2*b^2*d)*x^3)*s 
qrt(-(a^2*b)^(1/3)/b)*log((2*a*b*x^3 - 3*(a^2*b)^(1/3)*a*x - a^2 + 3*sqrt( 
1/3)*(2*a*b*x^2 + (a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt(-(a^2*b)^(1/3)/b 
))/(b*x^3 + a)) - ((2*b^2*c + a*b*d)*x^3 + 2*a*b*c + a^2*d)*(a^2*b)^(2/3)* 
log(a*b*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/3)*a) + 2*((2*b^2*c + a*b*d)*x^ 
3 + 2*a*b*c + a^2*d)*(a^2*b)^(2/3)*log(a*b*x + (a^2*b)^(2/3)) + 6*(a^2*b^2 
*c - a^3*b*d)*x)/(a^3*b^3*x^3 + a^4*b^2), 1/18*(6*sqrt(1/3)*(2*a^2*b^2*c + 
 a^3*b*d + (2*a*b^3*c + a^2*b^2*d)*x^3)*sqrt((a^2*b)^(1/3)/b)*arctan(sqrt( 
1/3)*(2*(a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt((a^2*b)^(1/3)/b)/a^2) - (( 
2*b^2*c + a*b*d)*x^3 + 2*a*b*c + a^2*d)*(a^2*b)^(2/3)*log(a*b*x^2 - (a^2*b 
)^(2/3)*x + (a^2*b)^(1/3)*a) + 2*((2*b^2*c + a*b*d)*x^3 + 2*a*b*c + a^2*d) 
*(a^2*b)^(2/3)*log(a*b*x + (a^2*b)^(2/3)) + 6*(a^2*b^2*c - a^3*b*d)*x)/(a^ 
3*b^3*x^3 + a^4*b^2)]
 

Sympy [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.57 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^2} \, dx=\frac {x \left (- a d + b c\right )}{3 a^{2} b + 3 a b^{2} x^{3}} + \operatorname {RootSum} {\left (729 t^{3} a^{5} b^{4} - a^{3} d^{3} - 6 a^{2} b c d^{2} - 12 a b^{2} c^{2} d - 8 b^{3} c^{3}, \left ( t \mapsto t \log {\left (\frac {9 t a^{2} b}{a d + 2 b c} + x \right )} \right )\right )} \] Input:

integrate((d*x**3+c)/(b*x**3+a)**2,x)
 

Output:

x*(-a*d + b*c)/(3*a**2*b + 3*a*b**2*x**3) + RootSum(729*_t**3*a**5*b**4 - 
a**3*d**3 - 6*a**2*b*c*d**2 - 12*a*b**2*c**2*d - 8*b**3*c**3, Lambda(_t, _ 
t*log(9*_t*a**2*b/(a*d + 2*b*c) + x)))
                                                                                    
                                                                                    
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.93 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^2} \, dx=\frac {{\left (b c - a d\right )} x}{3 \, {\left (a b^{2} x^{3} + a^{2} b\right )}} + \frac {\sqrt {3} {\left (2 \, b c + a d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{9 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {{\left (2 \, b c + a d\right )} \log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {{\left (2 \, b c + a d\right )} \log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{9 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} \] Input:

integrate((d*x^3+c)/(b*x^3+a)^2,x, algorithm="maxima")
 

Output:

1/3*(b*c - a*d)*x/(a*b^2*x^3 + a^2*b) + 1/9*sqrt(3)*(2*b*c + a*d)*arctan(1 
/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(a*b^2*(a/b)^(2/3)) - 1/18*(2* 
b*c + a*d)*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(a*b^2*(a/b)^(2/3)) + 1/ 
9*(2*b*c + a*d)*log(x + (a/b)^(1/3))/(a*b^2*(a/b)^(2/3))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.95 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^2} \, dx=-\frac {\sqrt {3} {\left (2 \, b c + a d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{9 \, \left (-a b^{2}\right )^{\frac {2}{3}} a} - \frac {{\left (2 \, b c + a d\right )} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 \, \left (-a b^{2}\right )^{\frac {2}{3}} a} - \frac {{\left (2 \, b c + a d\right )} \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{9 \, a^{2} b} + \frac {b c x - a d x}{3 \, {\left (b x^{3} + a\right )} a b} \] Input:

integrate((d*x^3+c)/(b*x^3+a)^2,x, algorithm="giac")
 

Output:

-1/9*sqrt(3)*(2*b*c + a*d)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^ 
(1/3))/((-a*b^2)^(2/3)*a) - 1/18*(2*b*c + a*d)*log(x^2 + x*(-a/b)^(1/3) + 
(-a/b)^(2/3))/((-a*b^2)^(2/3)*a) - 1/9*(2*b*c + a*d)*(-a/b)^(1/3)*log(abs( 
x - (-a/b)^(1/3)))/(a^2*b) + 1/3*(b*c*x - a*d*x)/((b*x^3 + a)*a*b)
 

Mupad [B] (verification not implemented)

Time = 0.70 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.85 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^2} \, dx=\frac {\ln \left (b^{1/3}\,x+a^{1/3}\right )\,\left (a\,d+2\,b\,c\right )}{9\,a^{5/3}\,b^{4/3}}-\frac {\ln \left (a^{1/3}-2\,b^{1/3}\,x+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (a\,d+2\,b\,c\right )}{9\,a^{5/3}\,b^{4/3}}+\frac {\ln \left (2\,b^{1/3}\,x-a^{1/3}+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (a\,d+2\,b\,c\right )}{9\,a^{5/3}\,b^{4/3}}-\frac {x\,\left (a\,d-b\,c\right )}{3\,a\,b\,\left (b\,x^3+a\right )} \] Input:

int((c + d*x^3)/(a + b*x^3)^2,x)
 

Output:

(log(b^(1/3)*x + a^(1/3))*(a*d + 2*b*c))/(9*a^(5/3)*b^(4/3)) - (log(3^(1/2 
)*a^(1/3)*1i - 2*b^(1/3)*x + a^(1/3))*((3^(1/2)*1i)/2 + 1/2)*(a*d + 2*b*c) 
)/(9*a^(5/3)*b^(4/3)) + (log(3^(1/2)*a^(1/3)*1i + 2*b^(1/3)*x - a^(1/3))*( 
(3^(1/2)*1i)/2 - 1/2)*(a*d + 2*b*c))/(9*a^(5/3)*b^(4/3)) - (x*(a*d - b*c)) 
/(3*a*b*(a + b*x^3))
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 349, normalized size of antiderivative = 2.07 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^2} \, dx=\frac {-2 a^{\frac {7}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) d -4 a^{\frac {4}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) b c -2 a^{\frac {4}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) b d \,x^{3}-4 a^{\frac {1}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) b^{2} c \,x^{3}-a^{\frac {7}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) d -2 a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) b c -a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) b d \,x^{3}-2 a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) b^{2} c \,x^{3}+2 a^{\frac {7}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) d +4 a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) b c +2 a^{\frac {4}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) b d \,x^{3}+4 a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) b^{2} c \,x^{3}-6 b^{\frac {1}{3}} a^{2} d x +6 b^{\frac {4}{3}} a c x}{18 b^{\frac {4}{3}} a^{2} \left (b \,x^{3}+a \right )} \] Input:

int((d*x^3+c)/(b*x^3+a)^2,x)
 

Output:

( - 2*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt(3)))* 
a**2*d - 4*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt( 
3)))*a*b*c - 2*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*s 
qrt(3)))*a*b*d*x**3 - 4*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a 
**(1/3)*sqrt(3)))*b**2*c*x**3 - a**(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)* 
x + b**(2/3)*x**2)*a**2*d - 2*a**(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)*x 
+ b**(2/3)*x**2)*a*b*c - a**(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)*x + b** 
(2/3)*x**2)*a*b*d*x**3 - 2*a**(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)*x + b 
**(2/3)*x**2)*b**2*c*x**3 + 2*a**(1/3)*log(a**(1/3) + b**(1/3)*x)*a**2*d + 
 4*a**(1/3)*log(a**(1/3) + b**(1/3)*x)*a*b*c + 2*a**(1/3)*log(a**(1/3) + b 
**(1/3)*x)*a*b*d*x**3 + 4*a**(1/3)*log(a**(1/3) + b**(1/3)*x)*b**2*c*x**3 
- 6*b**(1/3)*a**2*d*x + 6*b**(1/3)*a*b*c*x)/(18*b**(1/3)*a**2*b*(a + b*x** 
3))