\(\int \frac {c+d x^3}{(a+b x^3)^{3/2}} \, dx\) [53]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 251 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 (b c-a d) x}{3 a b \sqrt {a+b x^3}}+\frac {2 \sqrt {2+\sqrt {3}} (b c+2 a d) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} a b^{4/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

2/3*(-a*d+b*c)*x/a/b/(b*x^3+a)^(1/2)+2/9*(1/2*6^(1/2)+1/2*2^(1/2))*(2*a*d+ 
b*c)*(a^(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1 
/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*x) 
/((1+3^(1/2))*a^(1/3)+b^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/a/b^(4/3)/(a^(1/3) 
*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1 
/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.29 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {x \left (2 b c-2 a d+(b c+2 a d) \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a}\right )\right )}{3 a b \sqrt {a+b x^3}} \] Input:

Integrate[(c + d*x^3)/(a + b*x^3)^(3/2),x]
 

Output:

(x*(2*b*c - 2*a*d + (b*c + 2*a*d)*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/ 
3, 1/2, 4/3, -((b*x^3)/a)]))/(3*a*b*Sqrt[a + b*x^3])
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {910, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x^3}{\left (a+b x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 910

\(\displaystyle \frac {(2 a d+b c) \int \frac {1}{\sqrt {b x^3+a}}dx}{3 a b}+\frac {2 x (b c-a d)}{3 a b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} (2 a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} a b^{4/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2 x (b c-a d)}{3 a b \sqrt {a+b x^3}}\)

Input:

Int[(c + d*x^3)/(a + b*x^3)^(3/2),x]
 

Output:

(2*(b*c - a*d)*x)/(3*a*b*Sqrt[a + b*x^3]) + (2*Sqrt[2 + Sqrt[3]]*(b*c + 2* 
a*d)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2 
)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a 
^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]]) 
/(3*3^(1/4)*a*b^(4/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])* 
a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 910
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Si 
mp[(-(b*c - a*d))*x*((a + b*x^n)^(p + 1)/(a*b*n*(p + 1))), x] - Simp[(a*d - 
 b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1))   Int[(a + b*x^n)^(p + 1), x], x] /; 
FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/ 
n + p, 0])
 
Maple [A] (verified)

Time = 0.85 (sec) , antiderivative size = 336, normalized size of antiderivative = 1.34

method result size
elliptic \(-\frac {2 x \left (a d -b c \right )}{3 b a \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {2 i \left (\frac {d}{b}-\frac {a d -b c}{3 b a}\right ) \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{3 b \sqrt {b \,x^{3}+a}}\) \(336\)
default \(c \left (\frac {2 x}{3 a \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {2 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{9 a b \sqrt {b \,x^{3}+a}}\right )+d \left (-\frac {2 x}{3 b \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {4 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{9 b^{2} \sqrt {b \,x^{3}+a}}\right )\) \(613\)

Input:

int((d*x^3+c)/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2/3/b*x/a*(a*d-b*c)/((x^3+a/b)*b)^(1/2)-2/3*I*(d/b-1/3*(a*d-b*c)/b/a)*3^( 
1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^ 
(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a 
*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^( 
1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^ 
3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/ 
b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1 
/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.33 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 \, {\left (\sqrt {b x^{3} + a} {\left (b^{2} c - a b d\right )} x + {\left ({\left (b^{2} c + 2 \, a b d\right )} x^{3} + a b c + 2 \, a^{2} d\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right )}}{3 \, {\left (a b^{3} x^{3} + a^{2} b^{2}\right )}} \] Input:

integrate((d*x^3+c)/(b*x^3+a)^(3/2),x, algorithm="fricas")
 

Output:

2/3*(sqrt(b*x^3 + a)*(b^2*c - a*b*d)*x + ((b^2*c + 2*a*b*d)*x^3 + a*b*c + 
2*a^2*d)*sqrt(b)*weierstrassPInverse(0, -4*a/b, x))/(a*b^3*x^3 + a^2*b^2)
 

Sympy [A] (verification not implemented)

Time = 3.18 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.31 \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {c x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {3}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {4}{3}\right )} + \frac {d x^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {4}{3}, \frac {3}{2} \\ \frac {7}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {7}{3}\right )} \] Input:

integrate((d*x**3+c)/(b*x**3+a)**(3/2),x)
 

Output:

c*x*gamma(1/3)*hyper((1/3, 3/2), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**( 
3/2)*gamma(4/3)) + d*x**4*gamma(4/3)*hyper((4/3, 3/2), (7/3,), b*x**3*exp_ 
polar(I*pi)/a)/(3*a**(3/2)*gamma(7/3))
 

Maxima [F]

\[ \int \frac {c+d x^3}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {d x^{3} + c}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((d*x^3+c)/(b*x^3+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((d*x^3 + c)/(b*x^3 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {c+d x^3}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {d x^{3} + c}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((d*x^3+c)/(b*x^3+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((d*x^3 + c)/(b*x^3 + a)^(3/2), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {c+d x^3}{\left (a+b x^3\right )^{3/2}} \, dx=\int \frac {d\,x^3+c}{{\left (b\,x^3+a\right )}^{3/2}} \,d x \] Input:

int((c + d*x^3)/(a + b*x^3)^(3/2),x)
 

Output:

int((c + d*x^3)/(a + b*x^3)^(3/2), x)
 

Reduce [F]

\[ \int \frac {c+d x^3}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {-2 \sqrt {b \,x^{3}+a}\, d x +2 \left (\int \frac {\sqrt {b \,x^{3}+a}}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) a^{2} d +\left (\int \frac {\sqrt {b \,x^{3}+a}}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) a b c +2 \left (\int \frac {\sqrt {b \,x^{3}+a}}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) a b d \,x^{3}+\left (\int \frac {\sqrt {b \,x^{3}+a}}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) b^{2} c \,x^{3}}{b \left (b \,x^{3}+a \right )} \] Input:

int((d*x^3+c)/(b*x^3+a)^(3/2),x)
 

Output:

( - 2*sqrt(a + b*x**3)*d*x + 2*int(sqrt(a + b*x**3)/(a**2 + 2*a*b*x**3 + b 
**2*x**6),x)*a**2*d + int(sqrt(a + b*x**3)/(a**2 + 2*a*b*x**3 + b**2*x**6) 
,x)*a*b*c + 2*int(sqrt(a + b*x**3)/(a**2 + 2*a*b*x**3 + b**2*x**6),x)*a*b* 
d*x**3 + int(sqrt(a + b*x**3)/(a**2 + 2*a*b*x**3 + b**2*x**6),x)*b**2*c*x* 
*3)/(b*(a + b*x**3))