\(\int \frac {1}{(a+b x^3)^{3/2} (c+d x^3)^{3/2}} \, dx\) [66]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 89 \[ \int \frac {1}{\left (a+b x^3\right )^{3/2} \left (c+d x^3\right )^{3/2}} \, dx=\frac {x \sqrt {1+\frac {b x^3}{a}} \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {1}{3},\frac {3}{2},\frac {3}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a c \sqrt {a+b x^3} \sqrt {c+d x^3}} \] Output:

x*(1+b*x^3/a)^(1/2)*(1+d*x^3/c)^(1/2)*AppellF1(1/3,3/2,3/2,4/3,-b*x^3/a,-d 
*x^3/c)/a/c/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(483\) vs. \(2(89)=178\).

Time = 5.42 (sec) , antiderivative size = 483, normalized size of antiderivative = 5.43 \[ \int \frac {1}{\left (a+b x^3\right )^{3/2} \left (c+d x^3\right )^{3/2}} \, dx=\frac {8 a c x \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right ) \left (-2 \left (3 a^2 d^2+2 a b d \left (-3 c+d x^3\right )+b^2 c \left (3 c+2 d x^3\right )\right )+b d (b c+a d) x^3 \sqrt {1+\frac {b x^3}{a}} \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},\frac {1}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )\right )+3 x^4 \left (4 \left (a^2 d^2+a b d^2 x^3+b^2 c \left (c+d x^3\right )\right )-b d (b c+a d) x^3 \sqrt {1+\frac {b x^3}{a}} \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},\frac {1}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )\right ) \left (a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},\frac {3}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )+b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},\frac {1}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )\right )}{6 a c (b c-a d)^2 \sqrt {a+b x^3} \sqrt {c+d x^3} \left (-8 a c \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )+3 x^3 \left (a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},\frac {3}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )+b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},\frac {1}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )\right )\right )} \] Input:

Integrate[1/((a + b*x^3)^(3/2)*(c + d*x^3)^(3/2)),x]
 

Output:

(8*a*c*x*AppellF1[1/3, 1/2, 1/2, 4/3, -((b*x^3)/a), -((d*x^3)/c)]*(-2*(3*a 
^2*d^2 + 2*a*b*d*(-3*c + d*x^3) + b^2*c*(3*c + 2*d*x^3)) + b*d*(b*c + a*d) 
*x^3*Sqrt[1 + (b*x^3)/a]*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1/2, 1/2, 7/3, 
-((b*x^3)/a), -((d*x^3)/c)]) + 3*x^4*(4*(a^2*d^2 + a*b*d^2*x^3 + b^2*c*(c 
+ d*x^3)) - b*d*(b*c + a*d)*x^3*Sqrt[1 + (b*x^3)/a]*Sqrt[1 + (d*x^3)/c]*Ap 
pellF1[4/3, 1/2, 1/2, 7/3, -((b*x^3)/a), -((d*x^3)/c)])*(a*d*AppellF1[4/3, 
 1/2, 3/2, 7/3, -((b*x^3)/a), -((d*x^3)/c)] + b*c*AppellF1[4/3, 3/2, 1/2, 
7/3, -((b*x^3)/a), -((d*x^3)/c)]))/(6*a*c*(b*c - a*d)^2*Sqrt[a + b*x^3]*Sq 
rt[c + d*x^3]*(-8*a*c*AppellF1[1/3, 1/2, 1/2, 4/3, -((b*x^3)/a), -((d*x^3) 
/c)] + 3*x^3*(a*d*AppellF1[4/3, 1/2, 3/2, 7/3, -((b*x^3)/a), -((d*x^3)/c)] 
 + b*c*AppellF1[4/3, 3/2, 1/2, 7/3, -((b*x^3)/a), -((d*x^3)/c)])))
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {937, 937, 936}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x^3\right )^{3/2} \left (c+d x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 937

\(\displaystyle \frac {\sqrt {\frac {b x^3}{a}+1} \int \frac {1}{\left (\frac {b x^3}{a}+1\right )^{3/2} \left (d x^3+c\right )^{3/2}}dx}{a \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 937

\(\displaystyle \frac {\sqrt {\frac {b x^3}{a}+1} \sqrt {\frac {d x^3}{c}+1} \int \frac {1}{\left (\frac {b x^3}{a}+1\right )^{3/2} \left (\frac {d x^3}{c}+1\right )^{3/2}}dx}{a c \sqrt {a+b x^3} \sqrt {c+d x^3}}\)

\(\Big \downarrow \) 936

\(\displaystyle \frac {x \sqrt {\frac {b x^3}{a}+1} \sqrt {\frac {d x^3}{c}+1} \operatorname {AppellF1}\left (\frac {1}{3},\frac {3}{2},\frac {3}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a c \sqrt {a+b x^3} \sqrt {c+d x^3}}\)

Input:

Int[1/((a + b*x^3)^(3/2)*(c + d*x^3)^(3/2)),x]
 

Output:

(x*Sqrt[1 + (b*x^3)/a]*Sqrt[1 + (d*x^3)/c]*AppellF1[1/3, 3/2, 3/2, 4/3, -( 
(b*x^3)/a), -((d*x^3)/c)])/(a*c*Sqrt[a + b*x^3]*Sqrt[c + d*x^3])
 

Defintions of rubi rules used

rule 936
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^p*c^q*x*AppellF1[1/n, -p, -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c) 
], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] 
 && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 937
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]) 
  Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, p, q 
}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [F]

\[\int \frac {1}{\left (b \,x^{3}+a \right )^{\frac {3}{2}} \left (d \,x^{3}+c \right )^{\frac {3}{2}}}d x\]

Input:

int(1/(b*x^3+a)^(3/2)/(d*x^3+c)^(3/2),x)
 

Output:

int(1/(b*x^3+a)^(3/2)/(d*x^3+c)^(3/2),x)
 

Fricas [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{3/2} \left (c+d x^3\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{\frac {3}{2}} {\left (d x^{3} + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(b*x^3+a)^(3/2)/(d*x^3+c)^(3/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*x^3 + a)*sqrt(d*x^3 + c)/(b^2*d^2*x^12 + 2*(b^2*c*d + a*b* 
d^2)*x^9 + (b^2*c^2 + 4*a*b*c*d + a^2*d^2)*x^6 + a^2*c^2 + 2*(a*b*c^2 + a^ 
2*c*d)*x^3), x)
 

Sympy [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{3/2} \left (c+d x^3\right )^{3/2}} \, dx=\int \frac {1}{\left (a + b x^{3}\right )^{\frac {3}{2}} \left (c + d x^{3}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(b*x**3+a)**(3/2)/(d*x**3+c)**(3/2),x)
 

Output:

Integral(1/((a + b*x**3)**(3/2)*(c + d*x**3)**(3/2)), x)
 

Maxima [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{3/2} \left (c+d x^3\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{\frac {3}{2}} {\left (d x^{3} + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(b*x^3+a)^(3/2)/(d*x^3+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*x^3 + a)^(3/2)*(d*x^3 + c)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{3/2} \left (c+d x^3\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{\frac {3}{2}} {\left (d x^{3} + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(b*x^3+a)^(3/2)/(d*x^3+c)^(3/2),x, algorithm="giac")
 

Output:

integrate(1/((b*x^3 + a)^(3/2)*(d*x^3 + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^3\right )^{3/2} \left (c+d x^3\right )^{3/2}} \, dx=\int \frac {1}{{\left (b\,x^3+a\right )}^{3/2}\,{\left (d\,x^3+c\right )}^{3/2}} \,d x \] Input:

int(1/((a + b*x^3)^(3/2)*(c + d*x^3)^(3/2)),x)
 

Output:

int(1/((a + b*x^3)^(3/2)*(c + d*x^3)^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{3/2} \left (c+d x^3\right )^{3/2}} \, dx=\int \frac {\sqrt {d \,x^{3}+c}\, \sqrt {b \,x^{3}+a}}{b^{2} d^{2} x^{12}+2 a b \,d^{2} x^{9}+2 b^{2} c d \,x^{9}+a^{2} d^{2} x^{6}+4 a b c d \,x^{6}+b^{2} c^{2} x^{6}+2 a^{2} c d \,x^{3}+2 a b \,c^{2} x^{3}+a^{2} c^{2}}d x \] Input:

int(1/(b*x^3+a)^(3/2)/(d*x^3+c)^(3/2),x)
 

Output:

int((sqrt(c + d*x**3)*sqrt(a + b*x**3))/(a**2*c**2 + 2*a**2*c*d*x**3 + a** 
2*d**2*x**6 + 2*a*b*c**2*x**3 + 4*a*b*c*d*x**6 + 2*a*b*d**2*x**9 + b**2*c* 
*2*x**6 + 2*b**2*c*d*x**9 + b**2*d**2*x**12),x)