\(\int \frac {(a+b x^4)^2}{c+d x^4} \, dx\) [12]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 192 \[ \int \frac {\left (a+b x^4\right )^2}{c+d x^4} \, dx=-\frac {b (b c-2 a d) x}{d^2}+\frac {b^2 x^5}{5 d}-\frac {(b c-a d)^2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt {2} c^{3/4} d^{9/4}}+\frac {(b c-a d)^2 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt {2} c^{3/4} d^{9/4}}+\frac {(b c-a d)^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x}{\sqrt {c}+\sqrt {d} x^2}\right )}{2 \sqrt {2} c^{3/4} d^{9/4}} \] Output:

-b*(-2*a*d+b*c)*x/d^2+1/5*b^2*x^5/d+1/4*(-a*d+b*c)^2*arctan(-1+2^(1/2)*d^( 
1/4)*x/c^(1/4))*2^(1/2)/c^(3/4)/d^(9/4)+1/4*(-a*d+b*c)^2*arctan(1+2^(1/2)* 
d^(1/4)*x/c^(1/4))*2^(1/2)/c^(3/4)/d^(9/4)+1/4*(-a*d+b*c)^2*arctanh(2^(1/2 
)*c^(1/4)*d^(1/4)*x/(c^(1/2)+d^(1/2)*x^2))*2^(1/2)/c^(3/4)/d^(9/4)
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.20 \[ \int \frac {\left (a+b x^4\right )^2}{c+d x^4} \, dx=\frac {-40 b c^{3/4} \sqrt [4]{d} (b c-2 a d) x+8 b^2 c^{3/4} d^{5/4} x^5-10 \sqrt {2} (b c-a d)^2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )+10 \sqrt {2} (b c-a d)^2 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )-5 \sqrt {2} (b c-a d)^2 \log \left (\sqrt {c}-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {d} x^2\right )+5 \sqrt {2} (b c-a d)^2 \log \left (\sqrt {c}+\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {d} x^2\right )}{40 c^{3/4} d^{9/4}} \] Input:

Integrate[(a + b*x^4)^2/(c + d*x^4),x]
 

Output:

(-40*b*c^(3/4)*d^(1/4)*(b*c - 2*a*d)*x + 8*b^2*c^(3/4)*d^(5/4)*x^5 - 10*Sq 
rt[2]*(b*c - a*d)^2*ArcTan[1 - (Sqrt[2]*d^(1/4)*x)/c^(1/4)] + 10*Sqrt[2]*( 
b*c - a*d)^2*ArcTan[1 + (Sqrt[2]*d^(1/4)*x)/c^(1/4)] - 5*Sqrt[2]*(b*c - a* 
d)^2*Log[Sqrt[c] - Sqrt[2]*c^(1/4)*d^(1/4)*x + Sqrt[d]*x^2] + 5*Sqrt[2]*(b 
*c - a*d)^2*Log[Sqrt[c] + Sqrt[2]*c^(1/4)*d^(1/4)*x + Sqrt[d]*x^2])/(40*c^ 
(3/4)*d^(9/4))
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.32, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {915, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^4\right )^2}{c+d x^4} \, dx\)

\(\Big \downarrow \) 915

\(\displaystyle \int \left (\frac {a^2 d^2-2 a b c d+b^2 c^2}{d^2 \left (c+d x^4\right )}-\frac {b (b c-2 a d)}{d^2}+\frac {b^2 x^4}{d}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {(b c-a d)^2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt {2} c^{3/4} d^{9/4}}+\frac {(b c-a d)^2 \arctan \left (\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )}{2 \sqrt {2} c^{3/4} d^{9/4}}-\frac {(b c-a d)^2 \log \left (-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {c}+\sqrt {d} x^2\right )}{4 \sqrt {2} c^{3/4} d^{9/4}}+\frac {(b c-a d)^2 \log \left (\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {c}+\sqrt {d} x^2\right )}{4 \sqrt {2} c^{3/4} d^{9/4}}-\frac {b x (b c-2 a d)}{d^2}+\frac {b^2 x^5}{5 d}\)

Input:

Int[(a + b*x^4)^2/(c + d*x^4),x]
 

Output:

-((b*(b*c - 2*a*d)*x)/d^2) + (b^2*x^5)/(5*d) - ((b*c - a*d)^2*ArcTan[1 - ( 
Sqrt[2]*d^(1/4)*x)/c^(1/4)])/(2*Sqrt[2]*c^(3/4)*d^(9/4)) + ((b*c - a*d)^2* 
ArcTan[1 + (Sqrt[2]*d^(1/4)*x)/c^(1/4)])/(2*Sqrt[2]*c^(3/4)*d^(9/4)) - ((b 
*c - a*d)^2*Log[Sqrt[c] - Sqrt[2]*c^(1/4)*d^(1/4)*x + Sqrt[d]*x^2])/(4*Sqr 
t[2]*c^(3/4)*d^(9/4)) + ((b*c - a*d)^2*Log[Sqrt[c] + Sqrt[2]*c^(1/4)*d^(1/ 
4)*x + Sqrt[d]*x^2])/(4*Sqrt[2]*c^(3/4)*d^(9/4))
 

Defintions of rubi rules used

rule 915
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Int[PolynomialDivide[(a + b*x^n)^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a 
, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[q, 
0] && GeQ[p, -q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.90 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.41

method result size
risch \(\frac {b^{2} x^{5}}{5 d}+\frac {2 b a x}{d}-\frac {b^{2} c x}{d^{2}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (d \,\textit {\_Z}^{4}+c \right )}{\sum }\frac {\left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 d^{3}}\) \(78\)
default \(\frac {b \left (\frac {1}{5} b d \,x^{5}+2 a d x -b c x \right )}{d^{2}}+\frac {\left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {c}{d}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {c}{d}}}{x^{2}-\left (\frac {c}{d}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {c}{d}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}-1\right )\right )}{8 d^{2} c}\) \(150\)

Input:

int((b*x^4+a)^2/(d*x^4+c),x,method=_RETURNVERBOSE)
 

Output:

1/5*b^2*x^5/d+2*b/d*a*x-b^2/d^2*c*x+1/4/d^3*sum((a^2*d^2-2*a*b*c*d+b^2*c^2 
)/_R^3*ln(x-_R),_R=RootOf(_Z^4*d+c))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 1092, normalized size of antiderivative = 5.69 \[ \int \frac {\left (a+b x^4\right )^2}{c+d x^4} \, dx =\text {Too large to display} \] Input:

integrate((b*x^4+a)^2/(d*x^4+c),x, algorithm="fricas")
 

Output:

1/20*(4*b^2*d*x^5 + 5*d^2*(-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 
- 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^ 
2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8)/(c^3*d^9))^(1/4)*log(c*d^2*(-(b^8*c^8 
 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^ 
4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8) 
/(c^3*d^9))^(1/4) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*x) + 5*I*d^2*(-(b^8*c^ 
8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c 
^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8 
)/(c^3*d^9))^(1/4)*log(I*c*d^2*(-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6 
*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a 
^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8)/(c^3*d^9))^(1/4) + (b^2*c^2 - 2* 
a*b*c*d + a^2*d^2)*x) - 5*I*d^2*(-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^ 
6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28* 
a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8)/(c^3*d^9))^(1/4)*log(-I*c*d^2*( 
-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a 
^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + 
 a^8*d^8)/(c^3*d^9))^(1/4) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*x) - 5*d^2*(- 
(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^ 
4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + 
a^8*d^8)/(c^3*d^9))^(1/4)*log(-c*d^2*(-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^...
 

Sympy [A] (verification not implemented)

Time = 0.49 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.97 \[ \int \frac {\left (a+b x^4\right )^2}{c+d x^4} \, dx=\frac {b^{2} x^{5}}{5 d} + x \left (\frac {2 a b}{d} - \frac {b^{2} c}{d^{2}}\right ) + \operatorname {RootSum} {\left (256 t^{4} c^{3} d^{9} + a^{8} d^{8} - 8 a^{7} b c d^{7} + 28 a^{6} b^{2} c^{2} d^{6} - 56 a^{5} b^{3} c^{3} d^{5} + 70 a^{4} b^{4} c^{4} d^{4} - 56 a^{3} b^{5} c^{5} d^{3} + 28 a^{2} b^{6} c^{6} d^{2} - 8 a b^{7} c^{7} d + b^{8} c^{8}, \left ( t \mapsto t \log {\left (\frac {4 t c d^{2}}{a^{2} d^{2} - 2 a b c d + b^{2} c^{2}} + x \right )} \right )\right )} \] Input:

integrate((b*x**4+a)**2/(d*x**4+c),x)
 

Output:

b**2*x**5/(5*d) + x*(2*a*b/d - b**2*c/d**2) + RootSum(256*_t**4*c**3*d**9 
+ a**8*d**8 - 8*a**7*b*c*d**7 + 28*a**6*b**2*c**2*d**6 - 56*a**5*b**3*c**3 
*d**5 + 70*a**4*b**4*c**4*d**4 - 56*a**3*b**5*c**5*d**3 + 28*a**2*b**6*c** 
6*d**2 - 8*a*b**7*c**7*d + b**8*c**8, Lambda(_t, _t*log(4*_t*c*d**2/(a**2* 
d**2 - 2*a*b*c*d + b**2*c**2) + x)))
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 286, normalized size of antiderivative = 1.49 \[ \int \frac {\left (a+b x^4\right )^2}{c+d x^4} \, dx=\frac {b^{2} d x^{5} - 5 \, {\left (b^{2} c - 2 \, a b d\right )} x}{5 \, d^{2}} + \frac {\frac {2 \, \sqrt {2} {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {d} x + \sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {c} \sqrt {d}}}\right )}{\sqrt {c} \sqrt {\sqrt {c} \sqrt {d}}} + \frac {2 \, \sqrt {2} {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {d} x - \sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {c} \sqrt {d}}}\right )}{\sqrt {c} \sqrt {\sqrt {c} \sqrt {d}}} + \frac {\sqrt {2} {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \log \left (\sqrt {d} x^{2} + \sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} x + \sqrt {c}\right )}{c^{\frac {3}{4}} d^{\frac {1}{4}}} - \frac {\sqrt {2} {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \log \left (\sqrt {d} x^{2} - \sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} x + \sqrt {c}\right )}{c^{\frac {3}{4}} d^{\frac {1}{4}}}}{8 \, d^{2}} \] Input:

integrate((b*x^4+a)^2/(d*x^4+c),x, algorithm="maxima")
 

Output:

1/5*(b^2*d*x^5 - 5*(b^2*c - 2*a*b*d)*x)/d^2 + 1/8*(2*sqrt(2)*(b^2*c^2 - 2* 
a*b*c*d + a^2*d^2)*arctan(1/2*sqrt(2)*(2*sqrt(d)*x + sqrt(2)*c^(1/4)*d^(1/ 
4))/sqrt(sqrt(c)*sqrt(d)))/(sqrt(c)*sqrt(sqrt(c)*sqrt(d))) + 2*sqrt(2)*(b^ 
2*c^2 - 2*a*b*c*d + a^2*d^2)*arctan(1/2*sqrt(2)*(2*sqrt(d)*x - sqrt(2)*c^( 
1/4)*d^(1/4))/sqrt(sqrt(c)*sqrt(d)))/(sqrt(c)*sqrt(sqrt(c)*sqrt(d))) + sqr 
t(2)*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log(sqrt(d)*x^2 + sqrt(2)*c^(1/4)*d^( 
1/4)*x + sqrt(c))/(c^(3/4)*d^(1/4)) - sqrt(2)*(b^2*c^2 - 2*a*b*c*d + a^2*d 
^2)*log(sqrt(d)*x^2 - sqrt(2)*c^(1/4)*d^(1/4)*x + sqrt(c))/(c^(3/4)*d^(1/4 
)))/d^2
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 353 vs. \(2 (143) = 286\).

Time = 0.12 (sec) , antiderivative size = 353, normalized size of antiderivative = 1.84 \[ \int \frac {\left (a+b x^4\right )^2}{c+d x^4} \, dx=\frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {1}{4}} b^{2} c^{2} - 2 \, \left (c d^{3}\right )^{\frac {1}{4}} a b c d + \left (c d^{3}\right )^{\frac {1}{4}} a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {c}{d}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {c}{d}\right )^{\frac {1}{4}}}\right )}{4 \, c d^{3}} + \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {1}{4}} b^{2} c^{2} - 2 \, \left (c d^{3}\right )^{\frac {1}{4}} a b c d + \left (c d^{3}\right )^{\frac {1}{4}} a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {c}{d}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {c}{d}\right )^{\frac {1}{4}}}\right )}{4 \, c d^{3}} + \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {1}{4}} b^{2} c^{2} - 2 \, \left (c d^{3}\right )^{\frac {1}{4}} a b c d + \left (c d^{3}\right )^{\frac {1}{4}} a^{2} d^{2}\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {c}{d}\right )^{\frac {1}{4}} + \sqrt {\frac {c}{d}}\right )}{8 \, c d^{3}} - \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {1}{4}} b^{2} c^{2} - 2 \, \left (c d^{3}\right )^{\frac {1}{4}} a b c d + \left (c d^{3}\right )^{\frac {1}{4}} a^{2} d^{2}\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {c}{d}\right )^{\frac {1}{4}} + \sqrt {\frac {c}{d}}\right )}{8 \, c d^{3}} + \frac {b^{2} d^{4} x^{5} - 5 \, b^{2} c d^{3} x + 10 \, a b d^{4} x}{5 \, d^{5}} \] Input:

integrate((b*x^4+a)^2/(d*x^4+c),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

1/4*sqrt(2)*((c*d^3)^(1/4)*b^2*c^2 - 2*(c*d^3)^(1/4)*a*b*c*d + (c*d^3)^(1/ 
4)*a^2*d^2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(c/d)^(1/4))/(c/d)^(1/4))/(c 
*d^3) + 1/4*sqrt(2)*((c*d^3)^(1/4)*b^2*c^2 - 2*(c*d^3)^(1/4)*a*b*c*d + (c* 
d^3)^(1/4)*a^2*d^2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(c/d)^(1/4))/(c/d)^( 
1/4))/(c*d^3) + 1/8*sqrt(2)*((c*d^3)^(1/4)*b^2*c^2 - 2*(c*d^3)^(1/4)*a*b*c 
*d + (c*d^3)^(1/4)*a^2*d^2)*log(x^2 + sqrt(2)*x*(c/d)^(1/4) + sqrt(c/d))/( 
c*d^3) - 1/8*sqrt(2)*((c*d^3)^(1/4)*b^2*c^2 - 2*(c*d^3)^(1/4)*a*b*c*d + (c 
*d^3)^(1/4)*a^2*d^2)*log(x^2 - sqrt(2)*x*(c/d)^(1/4) + sqrt(c/d))/(c*d^3) 
+ 1/5*(b^2*d^4*x^5 - 5*b^2*c*d^3*x + 10*a*b*d^4*x)/d^5
 

Mupad [B] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 1081, normalized size of antiderivative = 5.63 \[ \int \frac {\left (a+b x^4\right )^2}{c+d x^4} \, dx =\text {Too large to display} \] Input:

int((a + b*x^4)^2/(c + d*x^4),x)
 

Output:

(b^2*x^5)/(5*d) - x*((b^2*c)/d^2 - (2*a*b)/d) + (atan((((a*d - b*c)^2*((x* 
(a^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/d 
 - ((a*d - b*c)^2*(4*a^2*c*d^3 + 4*b^2*c^3*d - 8*a*b*c^2*d^2))/(4*(-c)^(3/ 
4)*d^(9/4)))*1i)/((-c)^(3/4)*d^(9/4)) + ((a*d - b*c)^2*((x*(a^4*d^4 + b^4* 
c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/d + ((a*d - b*c) 
^2*(4*a^2*c*d^3 + 4*b^2*c^3*d - 8*a*b*c^2*d^2))/(4*(-c)^(3/4)*d^(9/4)))*1i 
)/((-c)^(3/4)*d^(9/4)))/(((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c^4 + 6*a^2*b^2 
*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/d - ((a*d - b*c)^2*(4*a^2*c*d^3 
 + 4*b^2*c^3*d - 8*a*b*c^2*d^2))/(4*(-c)^(3/4)*d^(9/4))))/((-c)^(3/4)*d^(9 
/4)) - ((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3 
*c^3*d - 4*a^3*b*c*d^3))/d + ((a*d - b*c)^2*(4*a^2*c*d^3 + 4*b^2*c^3*d - 8 
*a*b*c^2*d^2))/(4*(-c)^(3/4)*d^(9/4))))/((-c)^(3/4)*d^(9/4))))*(a*d - b*c) 
^2*1i)/(2*(-c)^(3/4)*d^(9/4)) + (atan((((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c 
^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/d - ((a*d - b*c)^ 
2*(4*a^2*c*d^3 + 4*b^2*c^3*d - 8*a*b*c^2*d^2)*1i)/(4*(-c)^(3/4)*d^(9/4)))) 
/((-c)^(3/4)*d^(9/4)) + ((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c^4 + 6*a^2*b^2* 
c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/d + ((a*d - b*c)^2*(4*a^2*c*d^3 
+ 4*b^2*c^3*d - 8*a*b*c^2*d^2)*1i)/(4*(-c)^(3/4)*d^(9/4))))/((-c)^(3/4)*d^ 
(9/4)))/(((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b 
^3*c^3*d - 4*a^3*b*c*d^3))/d - ((a*d - b*c)^2*(4*a^2*c*d^3 + 4*b^2*c^3*...
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 477, normalized size of antiderivative = 2.48 \[ \int \frac {\left (a+b x^4\right )^2}{c+d x^4} \, dx =\text {Too large to display} \] Input:

int((b*x^4+a)^2/(d*x^4+c),x)
 

Output:

( - 10*d**(3/4)*c**(1/4)*sqrt(2)*atan((d**(1/4)*c**(1/4)*sqrt(2) - 2*sqrt( 
d)*x)/(d**(1/4)*c**(1/4)*sqrt(2)))*a**2*d**2 + 20*d**(3/4)*c**(1/4)*sqrt(2 
)*atan((d**(1/4)*c**(1/4)*sqrt(2) - 2*sqrt(d)*x)/(d**(1/4)*c**(1/4)*sqrt(2 
)))*a*b*c*d - 10*d**(3/4)*c**(1/4)*sqrt(2)*atan((d**(1/4)*c**(1/4)*sqrt(2) 
 - 2*sqrt(d)*x)/(d**(1/4)*c**(1/4)*sqrt(2)))*b**2*c**2 + 10*d**(3/4)*c**(1 
/4)*sqrt(2)*atan((d**(1/4)*c**(1/4)*sqrt(2) + 2*sqrt(d)*x)/(d**(1/4)*c**(1 
/4)*sqrt(2)))*a**2*d**2 - 20*d**(3/4)*c**(1/4)*sqrt(2)*atan((d**(1/4)*c**( 
1/4)*sqrt(2) + 2*sqrt(d)*x)/(d**(1/4)*c**(1/4)*sqrt(2)))*a*b*c*d + 10*d**( 
3/4)*c**(1/4)*sqrt(2)*atan((d**(1/4)*c**(1/4)*sqrt(2) + 2*sqrt(d)*x)/(d**( 
1/4)*c**(1/4)*sqrt(2)))*b**2*c**2 - 5*d**(3/4)*c**(1/4)*sqrt(2)*log( - d** 
(1/4)*c**(1/4)*sqrt(2)*x + sqrt(c) + sqrt(d)*x**2)*a**2*d**2 + 10*d**(3/4) 
*c**(1/4)*sqrt(2)*log( - d**(1/4)*c**(1/4)*sqrt(2)*x + sqrt(c) + sqrt(d)*x 
**2)*a*b*c*d - 5*d**(3/4)*c**(1/4)*sqrt(2)*log( - d**(1/4)*c**(1/4)*sqrt(2 
)*x + sqrt(c) + sqrt(d)*x**2)*b**2*c**2 + 5*d**(3/4)*c**(1/4)*sqrt(2)*log( 
d**(1/4)*c**(1/4)*sqrt(2)*x + sqrt(c) + sqrt(d)*x**2)*a**2*d**2 - 10*d**(3 
/4)*c**(1/4)*sqrt(2)*log(d**(1/4)*c**(1/4)*sqrt(2)*x + sqrt(c) + sqrt(d)*x 
**2)*a*b*c*d + 5*d**(3/4)*c**(1/4)*sqrt(2)*log(d**(1/4)*c**(1/4)*sqrt(2)*x 
 + sqrt(c) + sqrt(d)*x**2)*b**2*c**2 + 80*a*b*c*d**2*x - 40*b**2*c**2*d*x 
+ 8*b**2*c*d**2*x**5)/(40*c*d**3)