\(\int \frac {1}{\sqrt {a+b x^4} (c+d x^4)} \, dx\) [34]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 625 \[ \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx=-\frac {\sqrt [4]{d} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {a+b x^4}}\right )}{4 (-c)^{3/4} \sqrt {b c-a d}}-\frac {\sqrt [4]{d} \text {arctanh}\left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {a+b x^4}}\right )}{4 (-c)^{3/4} \sqrt {b c-a d}}+\frac {b^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} (b c+a d) \sqrt {a+b x^4}}-\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{8 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) \sqrt {a+b x^4}}-\frac {\left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{8 \sqrt [4]{a} \sqrt [4]{b} c \left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right ) \sqrt {a+b x^4}} \] Output:

-1/4*d^(1/4)*arctan((-a*d+b*c)^(1/2)*x/(-c)^(1/4)/d^(1/4)/(b*x^4+a)^(1/2)) 
/(-c)^(3/4)/(-a*d+b*c)^(1/2)-1/4*d^(1/4)*arctanh((-a*d+b*c)^(1/2)*x/(-c)^( 
1/4)/d^(1/4)/(b*x^4+a)^(1/2))/(-c)^(3/4)/(-a*d+b*c)^(1/2)+1/2*b^(3/4)*(a^( 
1/2)+b^(1/2)*x^2)*((b*x^4+a)/(a^(1/2)+b^(1/2)*x^2)^2)^(1/2)*InverseJacobiA 
M(2*arctan(b^(1/4)*x/a^(1/4)),1/2*2^(1/2))/a^(1/4)/(a*d+b*c)/(b*x^4+a)^(1/ 
2)-1/8*(b^(1/2)*(-c)^(1/2)+a^(1/2)*d^(1/2))*(a^(1/2)+b^(1/2)*x^2)*((b*x^4+ 
a)/(a^(1/2)+b^(1/2)*x^2)^2)^(1/2)*EllipticPi(sin(2*arctan(b^(1/4)*x/a^(1/4 
))),-1/4*(b^(1/2)*(-c)^(1/2)-a^(1/2)*d^(1/2))^2/a^(1/2)/b^(1/2)/(-c)^(1/2) 
/d^(1/2),1/2*2^(1/2))/a^(1/4)/b^(1/4)/c/(b^(1/2)*(-c)^(1/2)-a^(1/2)*d^(1/2 
))/(b*x^4+a)^(1/2)-1/8*(b^(1/2)*(-c)^(1/2)-a^(1/2)*d^(1/2))*(a^(1/2)+b^(1/ 
2)*x^2)*((b*x^4+a)/(a^(1/2)+b^(1/2)*x^2)^2)^(1/2)*EllipticPi(sin(2*arctan( 
b^(1/4)*x/a^(1/4))),1/4*(b^(1/2)*(-c)^(1/2)+a^(1/2)*d^(1/2))^2/a^(1/2)/b^( 
1/2)/(-c)^(1/2)/d^(1/2),1/2*2^(1/2))/a^(1/4)/b^(1/4)/c/(b^(1/2)*(-c)^(1/2) 
+a^(1/2)*d^(1/2))/(b*x^4+a)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.08 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.26 \[ \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx=-\frac {5 a c x \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},-\frac {b x^4}{a},-\frac {d x^4}{c}\right )}{\sqrt {a+b x^4} \left (c+d x^4\right ) \left (-5 a c \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},-\frac {b x^4}{a},-\frac {d x^4}{c}\right )+2 x^4 \left (2 a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},-\frac {b x^4}{a},-\frac {d x^4}{c}\right )+b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},-\frac {b x^4}{a},-\frac {d x^4}{c}\right )\right )\right )} \] Input:

Integrate[1/(Sqrt[a + b*x^4]*(c + d*x^4)),x]
 

Output:

(-5*a*c*x*AppellF1[1/4, 1/2, 1, 5/4, -((b*x^4)/a), -((d*x^4)/c)])/(Sqrt[a 
+ b*x^4]*(c + d*x^4)*(-5*a*c*AppellF1[1/4, 1/2, 1, 5/4, -((b*x^4)/a), -((d 
*x^4)/c)] + 2*x^4*(2*a*d*AppellF1[5/4, 1/2, 2, 9/4, -((b*x^4)/a), -((d*x^4 
)/c)] + b*c*AppellF1[5/4, 3/2, 1, 9/4, -((b*x^4)/a), -((d*x^4)/c)])))
 

Rubi [A] (verified)

Time = 1.91 (sec) , antiderivative size = 860, normalized size of antiderivative = 1.38, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {925, 1541, 27, 761, 2221, 2223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx\)

\(\Big \downarrow \) 925

\(\displaystyle \frac {\int \frac {1}{\left (1-\frac {\sqrt {d} x^2}{\sqrt {-c}}\right ) \sqrt {b x^4+a}}dx}{2 c}+\frac {\int \frac {1}{\left (\frac {\sqrt {d} x^2}{\sqrt {-c}}+1\right ) \sqrt {b x^4+a}}dx}{2 c}\)

\(\Big \downarrow \) 1541

\(\displaystyle \frac {\frac {\sqrt {b} \left (\sqrt {a} \sqrt {-c} \sqrt {d}+\sqrt {b} c\right ) \int \frac {1}{\sqrt {b x^4+a}}dx}{a d+b c}-\frac {\sqrt {a} \sqrt {d} \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) \int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a} \left (1-\frac {\sqrt {d} x^2}{\sqrt {-c}}\right ) \sqrt {b x^4+a}}dx}{a d+b c}}{2 c}+\frac {\frac {\sqrt {b} c \left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}+\sqrt {b}\right ) \int \frac {1}{\sqrt {b x^4+a}}dx}{a d+b c}+\frac {\sqrt {a} \sqrt {d} \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {-c}\right ) \int \frac {\sqrt {b} x^2+\sqrt {a}}{\sqrt {a} \left (\frac {\sqrt {d} x^2}{\sqrt {-c}}+1\right ) \sqrt {b x^4+a}}dx}{a d+b c}}{2 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\sqrt {b} \left (\sqrt {a} \sqrt {-c} \sqrt {d}+\sqrt {b} c\right ) \int \frac {1}{\sqrt {b x^4+a}}dx}{a d+b c}-\frac {\sqrt {d} \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) \int \frac {\sqrt {b} x^2+\sqrt {a}}{\left (1-\frac {\sqrt {d} x^2}{\sqrt {-c}}\right ) \sqrt {b x^4+a}}dx}{a d+b c}}{2 c}+\frac {\frac {\sqrt {b} c \left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}+\sqrt {b}\right ) \int \frac {1}{\sqrt {b x^4+a}}dx}{a d+b c}+\frac {\sqrt {d} \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {-c}\right ) \int \frac {\sqrt {b} x^2+\sqrt {a}}{\left (\frac {\sqrt {d} x^2}{\sqrt {-c}}+1\right ) \sqrt {b x^4+a}}dx}{a d+b c}}{2 c}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\frac {\sqrt [4]{b} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\sqrt {a} \sqrt {-c} \sqrt {d}+\sqrt {b} c\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt {a+b x^4} (a d+b c)}-\frac {\sqrt {d} \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) \int \frac {\sqrt {b} x^2+\sqrt {a}}{\left (1-\frac {\sqrt {d} x^2}{\sqrt {-c}}\right ) \sqrt {b x^4+a}}dx}{a d+b c}}{2 c}+\frac {\frac {\sqrt {d} \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {-c}\right ) \int \frac {\sqrt {b} x^2+\sqrt {a}}{\left (\frac {\sqrt {d} x^2}{\sqrt {-c}}+1\right ) \sqrt {b x^4+a}}dx}{a d+b c}+\frac {\sqrt [4]{b} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}+\sqrt {b}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt {a+b x^4} (a d+b c)}}{2 c}\)

\(\Big \downarrow \) 2221

\(\displaystyle \frac {\frac {\sqrt {d} \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {-c}\right ) \int \frac {\sqrt {b} x^2+\sqrt {a}}{\left (\frac {\sqrt {d} x^2}{\sqrt {-c}}+1\right ) \sqrt {b x^4+a}}dx}{a d+b c}+\frac {\sqrt [4]{b} c \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}+\sqrt {b}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt {a+b x^4} (a d+b c)}}{2 c}+\frac {\frac {\sqrt [4]{b} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\sqrt {a} \sqrt {-c} \sqrt {d}+\sqrt {b} c\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt {a+b x^4} (a d+b c)}-\frac {\sqrt {d} \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) \left (\frac {\sqrt [4]{-c} \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {-c}\right ) \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {a+b x^4}}\right )}{2 \sqrt [4]{d} \sqrt {b c-a d}}+\frac {\left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\sqrt {a}-\frac {\sqrt {b} \sqrt {-c}}{\sqrt {d}}\right ) \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} \sqrt [4]{b} \sqrt {a+b x^4}}\right )}{a d+b c}}{2 c}\)

\(\Big \downarrow \) 2223

\(\displaystyle \frac {\frac {\sqrt [4]{b} c \left (\sqrt {b}+\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}\right ) \left (\sqrt {b} x^2+\sqrt {a}\right ) \sqrt {\frac {b x^4+a}{\left (\sqrt {b} x^2+\sqrt {a}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} (b c+a d) \sqrt {b x^4+a}}+\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right ) \sqrt {d} \left (\frac {\left (\sqrt {a}+\frac {\sqrt {b} \sqrt {-c}}{\sqrt {d}}\right ) \left (\sqrt {b} x^2+\sqrt {a}\right ) \sqrt {\frac {b x^4+a}{\left (\sqrt {b} x^2+\sqrt {a}\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} \sqrt [4]{b} \sqrt {b x^4+a}}-\frac {(-c)^{3/4} \left (\sqrt {b}-\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}\right ) \text {arctanh}\left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {b x^4+a}}\right )}{2 \sqrt [4]{d} \sqrt {b c-a d}}\right )}{b c+a d}}{2 c}+\frac {\frac {\sqrt [4]{b} \left (\sqrt {b} c+\sqrt {a} \sqrt {-c} \sqrt {d}\right ) \left (\sqrt {b} x^2+\sqrt {a}\right ) \sqrt {\frac {b x^4+a}{\left (\sqrt {b} x^2+\sqrt {a}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} (b c+a d) \sqrt {b x^4+a}}-\frac {\left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) \sqrt {d} \left (\frac {\sqrt [4]{-c} \left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right ) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {b x^4+a}}\right )}{2 \sqrt [4]{d} \sqrt {b c-a d}}+\frac {\left (\sqrt {a}-\frac {\sqrt {b} \sqrt {-c}}{\sqrt {d}}\right ) \left (\sqrt {b} x^2+\sqrt {a}\right ) \sqrt {\frac {b x^4+a}{\left (\sqrt {b} x^2+\sqrt {a}\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} \sqrt [4]{b} \sqrt {b x^4+a}}\right )}{b c+a d}}{2 c}\)

Input:

Int[1/(Sqrt[a + b*x^4]*(c + d*x^4)),x]
 

Output:

((b^(1/4)*c*(Sqrt[b] + (Sqrt[a]*Sqrt[d])/Sqrt[-c])*(Sqrt[a] + Sqrt[b]*x^2) 
*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x 
)/a^(1/4)], 1/2])/(2*a^(1/4)*(b*c + a*d)*Sqrt[a + b*x^4]) + ((Sqrt[b]*Sqrt 
[-c] + Sqrt[a]*Sqrt[d])*Sqrt[d]*(-1/2*((-c)^(3/4)*(Sqrt[b] - (Sqrt[a]*Sqrt 
[d])/Sqrt[-c])*ArcTanh[(Sqrt[b*c - a*d]*x)/((-c)^(1/4)*d^(1/4)*Sqrt[a + b* 
x^4])])/(d^(1/4)*Sqrt[b*c - a*d]) + ((Sqrt[a] + (Sqrt[b]*Sqrt[-c])/Sqrt[d] 
)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*Elli 
pticPi[-1/4*(Sqrt[b]*Sqrt[-c] - Sqrt[a]*Sqrt[d])^2/(Sqrt[a]*Sqrt[b]*Sqrt[- 
c]*Sqrt[d]), 2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(1/4)*b^(1/4)*Sqrt[ 
a + b*x^4])))/(b*c + a*d))/(2*c) + ((b^(1/4)*(Sqrt[b]*c + Sqrt[a]*Sqrt[-c] 
*Sqrt[d])*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2) 
^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(1/4)*(b*c + a*d)* 
Sqrt[a + b*x^4]) - ((Sqrt[b]*Sqrt[-c] - Sqrt[a]*Sqrt[d])*Sqrt[d]*(((-c)^(1 
/4)*(Sqrt[b]*Sqrt[-c] + Sqrt[a]*Sqrt[d])*ArcTan[(Sqrt[b*c - a*d]*x)/((-c)^ 
(1/4)*d^(1/4)*Sqrt[a + b*x^4])])/(2*d^(1/4)*Sqrt[b*c - a*d]) + ((Sqrt[a] - 
 (Sqrt[b]*Sqrt[-c])/Sqrt[d])*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqr 
t[a] + Sqrt[b]*x^2)^2]*EllipticPi[(Sqrt[b]*Sqrt[-c] + Sqrt[a]*Sqrt[d])^2/( 
4*Sqrt[a]*Sqrt[b]*Sqrt[-c]*Sqrt[d]), 2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/ 
(4*a^(1/4)*b^(1/4)*Sqrt[a + b*x^4])))/(b*c + a*d))/(2*c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 925
Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[ 
1/(2*c)   Int[1/(Sqrt[a + b*x^4]*(1 - Rt[-d/c, 2]*x^2)), x], x] + Simp[1/(2 
*c)   Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a, b, 
 c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 1541
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[c/a, 2]}, Simp[(c*d + a*e*q)/(c*d^2 - a*e^2)   Int[1/Sqrt[a + c*x^4 
], x], x] - Simp[(a*e*(e + d*q))/(c*d^2 - a*e^2)   Int[(1 + q*x^2)/((d + e* 
x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e 
^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
 

rule 2221
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[c*(d/e 
) + a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[c*(d/e) + a*(e/d), 2])), x] 
+ Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4* 
d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x 
], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && Po 
sQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && PosQ[c*(d/e) + a*(e/d)]
 

rule 2223
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTanh[Rt[(-c)* 
(d/e) - a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[(-c)*(d/e) - a*(e/d), 2] 
)), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^ 
2)]/(4*d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*Arc 
Tan[q*x], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0 
] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && NegQ[c*(d/e) + a*(e 
/d)]
 
Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.60 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.31

method result size
default \(\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} d +c \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, \frac {i \sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, c \sqrt {b \,x^{4}+a}}}{\underline {\hspace {1.25 ex}}\alpha ^{3}}}{8 d}\) \(191\)
elliptic \(\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} d +c \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, \frac {i \sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, c \sqrt {b \,x^{4}+a}}}{\underline {\hspace {1.25 ex}}\alpha ^{3}}}{8 d}\) \(191\)

Input:

int(1/(b*x^4+a)^(1/2)/(d*x^4+c),x,method=_RETURNVERBOSE)
 

Output:

1/8/d*sum(1/_alpha^3*(-1/((a*d-b*c)/d)^(1/2)*arctanh(1/2*(2*_alpha^2*b*x^2 
+2*a)/((a*d-b*c)/d)^(1/2)/(b*x^4+a)^(1/2))+2/(I/a^(1/2)*b^(1/2))^(1/2)*_al 
pha^3*d/c*(1-I*b^(1/2)*x^2/a^(1/2))^(1/2)*(1+I*b^(1/2)*x^2/a^(1/2))^(1/2)/ 
(b*x^4+a)^(1/2)*EllipticPi(x*(I/a^(1/2)*b^(1/2))^(1/2),I*a^(1/2)/b^(1/2)*_ 
alpha^2/c*d,(-I/a^(1/2)*b^(1/2))^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2))),_alpha= 
RootOf(_Z^4*d+c))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx=\text {Timed out} \] Input:

integrate(1/(b*x^4+a)^(1/2)/(d*x^4+c),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx=\int \frac {1}{\sqrt {a + b x^{4}} \left (c + d x^{4}\right )}\, dx \] Input:

integrate(1/(b*x**4+a)**(1/2)/(d*x**4+c),x)
 

Output:

Integral(1/(sqrt(a + b*x**4)*(c + d*x**4)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx=\int { \frac {1}{\sqrt {b x^{4} + a} {\left (d x^{4} + c\right )}} \,d x } \] Input:

integrate(1/(b*x^4+a)^(1/2)/(d*x^4+c),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(b*x^4 + a)*(d*x^4 + c)), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx=\int { \frac {1}{\sqrt {b x^{4} + a} {\left (d x^{4} + c\right )}} \,d x } \] Input:

integrate(1/(b*x^4+a)^(1/2)/(d*x^4+c),x, algorithm="giac")
 

Output:

integrate(1/(sqrt(b*x^4 + a)*(d*x^4 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx=\int \frac {1}{\sqrt {b\,x^4+a}\,\left (d\,x^4+c\right )} \,d x \] Input:

int(1/((a + b*x^4)^(1/2)*(c + d*x^4)),x)
 

Output:

int(1/((a + b*x^4)^(1/2)*(c + d*x^4)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx=\int \frac {\sqrt {b \,x^{4}+a}}{b d \,x^{8}+a d \,x^{4}+b c \,x^{4}+a c}d x \] Input:

int(1/(b*x^4+a)^(1/2)/(d*x^4+c),x)
 

Output:

int(sqrt(a + b*x**4)/(a*c + a*d*x**4 + b*c*x**4 + b*d*x**8),x)