\(\int \frac {(a-b x^4)^{3/2}}{(c-d x^4)^2} \, dx\) [55]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 309 \[ \int \frac {\left (a-b x^4\right )^{3/2}}{\left (c-d x^4\right )^2} \, dx=-\frac {(b c-a d) x \sqrt {a-b x^4}}{4 c d \left (c-d x^4\right )}+\frac {\sqrt [4]{a} b^{3/4} (3 b c+a d) \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{4 c d^2 \sqrt {a-b x^4}}-\frac {3 \sqrt [4]{a} (b c-a d) (b c+a d) \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{8 \sqrt [4]{b} c^2 d^2 \sqrt {a-b x^4}}-\frac {3 \sqrt [4]{a} (b c-a d) (b c+a d) \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{8 \sqrt [4]{b} c^2 d^2 \sqrt {a-b x^4}} \] Output:

-1/4*(-a*d+b*c)*x*(-b*x^4+a)^(1/2)/c/d/(-d*x^4+c)+1/4*a^(1/4)*b^(3/4)*(a*d 
+3*b*c)*(1-b*x^4/a)^(1/2)*EllipticF(b^(1/4)*x/a^(1/4),I)/c/d^2/(-b*x^4+a)^ 
(1/2)-3/8*a^(1/4)*(-a*d+b*c)*(a*d+b*c)*(1-b*x^4/a)^(1/2)*EllipticPi(b^(1/4 
)*x/a^(1/4),-a^(1/2)*d^(1/2)/b^(1/2)/c^(1/2),I)/b^(1/4)/c^2/d^2/(-b*x^4+a) 
^(1/2)-3/8*a^(1/4)*(-a*d+b*c)*(a*d+b*c)*(1-b*x^4/a)^(1/2)*EllipticPi(b^(1/ 
4)*x/a^(1/4),a^(1/2)*d^(1/2)/b^(1/2)/c^(1/2),I)/b^(1/4)/c^2/d^2/(-b*x^4+a) 
^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.37 (sec) , antiderivative size = 342, normalized size of antiderivative = 1.11 \[ \int \frac {\left (a-b x^4\right )^{3/2}}{\left (c-d x^4\right )^2} \, dx=\frac {x \left (-b (3 b c+a d) x^4 \sqrt {1-\frac {b x^4}{a}} \left (-c+d x^4\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+\frac {5 c \left (-5 a c \left (4 a^2 d+b^2 c x^4-a b d x^4\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )-2 (-b c+a d) x^4 \left (a-b x^4\right ) \left (2 a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )\right )\right )}{5 a c \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+2 x^4 \left (2 a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )\right )}\right )}{20 c^2 d \sqrt {a-b x^4} \left (-c+d x^4\right )} \] Input:

Integrate[(a - b*x^4)^(3/2)/(c - d*x^4)^2,x]
 

Output:

(x*(-(b*(3*b*c + a*d)*x^4*Sqrt[1 - (b*x^4)/a]*(-c + d*x^4)*AppellF1[5/4, 1 
/2, 1, 9/4, (b*x^4)/a, (d*x^4)/c]) + (5*c*(-5*a*c*(4*a^2*d + b^2*c*x^4 - a 
*b*d*x^4)*AppellF1[1/4, 1/2, 1, 5/4, (b*x^4)/a, (d*x^4)/c] - 2*(-(b*c) + a 
*d)*x^4*(a - b*x^4)*(2*a*d*AppellF1[5/4, 1/2, 2, 9/4, (b*x^4)/a, (d*x^4)/c 
] + b*c*AppellF1[5/4, 3/2, 1, 9/4, (b*x^4)/a, (d*x^4)/c])))/(5*a*c*AppellF 
1[1/4, 1/2, 1, 5/4, (b*x^4)/a, (d*x^4)/c] + 2*x^4*(2*a*d*AppellF1[5/4, 1/2 
, 2, 9/4, (b*x^4)/a, (d*x^4)/c] + b*c*AppellF1[5/4, 3/2, 1, 9/4, (b*x^4)/a 
, (d*x^4)/c]))))/(20*c^2*d*Sqrt[a - b*x^4]*(-c + d*x^4))
 

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 299, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {930, 25, 1021, 765, 762, 925, 27, 1543, 1542}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a-b x^4\right )^{3/2}}{\left (c-d x^4\right )^2} \, dx\)

\(\Big \downarrow \) 930

\(\displaystyle -\frac {\int -\frac {a (b c+3 a d)-b (3 b c+a d) x^4}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{4 c d}-\frac {x \sqrt {a-b x^4} (b c-a d)}{4 c d \left (c-d x^4\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {a (b c+3 a d)-b (3 b c+a d) x^4}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{4 c d}-\frac {x \sqrt {a-b x^4} (b c-a d)}{4 c d \left (c-d x^4\right )}\)

\(\Big \downarrow \) 1021

\(\displaystyle \frac {\frac {b (a d+3 b c) \int \frac {1}{\sqrt {a-b x^4}}dx}{d}-\frac {3 (b c-a d) (a d+b c) \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{d}}{4 c d}-\frac {x \sqrt {a-b x^4} (b c-a d)}{4 c d \left (c-d x^4\right )}\)

\(\Big \downarrow \) 765

\(\displaystyle \frac {\frac {b \sqrt {1-\frac {b x^4}{a}} (a d+3 b c) \int \frac {1}{\sqrt {1-\frac {b x^4}{a}}}dx}{d \sqrt {a-b x^4}}-\frac {3 (b c-a d) (a d+b c) \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{d}}{4 c d}-\frac {x \sqrt {a-b x^4} (b c-a d)}{4 c d \left (c-d x^4\right )}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+3 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{d \sqrt {a-b x^4}}-\frac {3 (b c-a d) (a d+b c) \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{d}}{4 c d}-\frac {x \sqrt {a-b x^4} (b c-a d)}{4 c d \left (c-d x^4\right )}\)

\(\Big \downarrow \) 925

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+3 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{d \sqrt {a-b x^4}}-\frac {3 (b c-a d) (a d+b c) \left (\frac {\int \frac {\sqrt {c}}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {a-b x^4}}dx}{2 c}+\frac {\int \frac {\sqrt {c}}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {a-b x^4}}dx}{2 c}\right )}{d}}{4 c d}-\frac {x \sqrt {a-b x^4} (b c-a d)}{4 c d \left (c-d x^4\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+3 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{d \sqrt {a-b x^4}}-\frac {3 (b c-a d) (a d+b c) \left (\frac {\int \frac {1}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {a-b x^4}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {a-b x^4}}dx}{2 \sqrt {c}}\right )}{d}}{4 c d}-\frac {x \sqrt {a-b x^4} (b c-a d)}{4 c d \left (c-d x^4\right )}\)

\(\Big \downarrow \) 1543

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+3 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{d \sqrt {a-b x^4}}-\frac {3 (b c-a d) (a d+b c) \left (\frac {\sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {1-\frac {b x^4}{a}}}dx}{2 \sqrt {c} \sqrt {a-b x^4}}+\frac {\sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {1-\frac {b x^4}{a}}}dx}{2 \sqrt {c} \sqrt {a-b x^4}}\right )}{d}}{4 c d}-\frac {x \sqrt {a-b x^4} (b c-a d)}{4 c d \left (c-d x^4\right )}\)

\(\Big \downarrow \) 1542

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+3 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{d \sqrt {a-b x^4}}-\frac {3 (b c-a d) (a d+b c) \left (\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}}+\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}}\right )}{d}}{4 c d}-\frac {x \sqrt {a-b x^4} (b c-a d)}{4 c d \left (c-d x^4\right )}\)

Input:

Int[(a - b*x^4)^(3/2)/(c - d*x^4)^2,x]
 

Output:

-1/4*((b*c - a*d)*x*Sqrt[a - b*x^4])/(c*d*(c - d*x^4)) + ((a^(1/4)*b^(3/4) 
*(3*b*c + a*d)*Sqrt[1 - (b*x^4)/a]*EllipticF[ArcSin[(b^(1/4)*x)/a^(1/4)], 
-1])/(d*Sqrt[a - b*x^4]) - (3*(b*c - a*d)*(b*c + a*d)*((a^(1/4)*Sqrt[1 - ( 
b*x^4)/a]*EllipticPi[-((Sqrt[a]*Sqrt[d])/(Sqrt[b]*Sqrt[c])), ArcSin[(b^(1/ 
4)*x)/a^(1/4)], -1])/(2*b^(1/4)*c*Sqrt[a - b*x^4]) + (a^(1/4)*Sqrt[1 - (b* 
x^4)/a]*EllipticPi[(Sqrt[a]*Sqrt[d])/(Sqrt[b]*Sqrt[c]), ArcSin[(b^(1/4)*x) 
/a^(1/4)], -1])/(2*b^(1/4)*c*Sqrt[a - b*x^4])))/d)/(4*c*d)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 765
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt 
[a + b*x^4]   Int[1/Sqrt[1 + b*(x^4/a)], x], x] /; FreeQ[{a, b}, x] && NegQ 
[b/a] &&  !GtQ[a, 0]
 

rule 925
Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[ 
1/(2*c)   Int[1/(Sqrt[a + b*x^4]*(1 - Rt[-d/c, 2]*x^2)), x], x] + Simp[1/(2 
*c)   Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a, b, 
 c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 930
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[(a*d - c*b)*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(a*b*n*(p + 
1))), x] - Simp[1/(a*b*n*(p + 1))   Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q 
- 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*( 
p + q) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q, x]
 

rule 1021
Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x 
_)^(n_)]), x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^n], x], x] + Simp[(b* 
e - a*f)/b   Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b, c, 
 d, e, f, n}, x]
 

rule 1542
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x 
], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
 

rule 1543
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[ 
Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]   Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a) 
]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.45 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.06

method result size
default \(\frac {\left (a d -b c \right ) x \sqrt {-b \,x^{4}+a}}{4 d c \left (-d \,x^{4}+c \right )}+\frac {\left (\frac {b^{2}}{d^{2}}+\frac {b \left (a d -b c \right )}{4 d^{2} c}\right ) \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}-\frac {3 \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} d -c \right )}{\sum }\frac {\left (a^{2} d^{2}-b^{2} c^{2}\right ) \left (-\frac {\operatorname {arctanh}\left (\frac {-2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {-b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}-\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, \frac {\sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {\sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, c \sqrt {-b \,x^{4}+a}}\right )}{\underline {\hspace {1.25 ex}}\alpha ^{3}}\right )}{32 c \,d^{3}}\) \(328\)
elliptic \(\frac {\left (a d -b c \right ) x \sqrt {-b \,x^{4}+a}}{4 d c \left (-d \,x^{4}+c \right )}+\frac {\left (\frac {b^{2}}{d^{2}}+\frac {b \left (a d -b c \right )}{4 d^{2} c}\right ) \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}-\frac {3 \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} d -c \right )}{\sum }\frac {\left (a^{2} d^{2}-b^{2} c^{2}\right ) \left (-\frac {\operatorname {arctanh}\left (\frac {-2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {-b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}-\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, \frac {\sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {\sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, c \sqrt {-b \,x^{4}+a}}\right )}{\underline {\hspace {1.25 ex}}\alpha ^{3}}\right )}{32 c \,d^{3}}\) \(328\)

Input:

int((-b*x^4+a)^(3/2)/(-d*x^4+c)^2,x,method=_RETURNVERBOSE)
 

Output:

1/4*(a*d-b*c)/d/c*x*(-b*x^4+a)^(1/2)/(-d*x^4+c)+(b^2/d^2+1/4*b/d^2*(a*d-b* 
c)/c)/(1/a^(1/2)*b^(1/2))^(1/2)*(1-b^(1/2)*x^2/a^(1/2))^(1/2)*(1+b^(1/2)*x 
^2/a^(1/2))^(1/2)/(-b*x^4+a)^(1/2)*EllipticF(x*(1/a^(1/2)*b^(1/2))^(1/2),I 
)-3/32/c/d^3*sum((a^2*d^2-b^2*c^2)/_alpha^3*(-1/((a*d-b*c)/d)^(1/2)*arctan 
h(1/2*(-2*_alpha^2*b*x^2+2*a)/((a*d-b*c)/d)^(1/2)/(-b*x^4+a)^(1/2))-2/(1/a 
^(1/2)*b^(1/2))^(1/2)*_alpha^3*d/c*(1-b^(1/2)*x^2/a^(1/2))^(1/2)*(1+b^(1/2 
)*x^2/a^(1/2))^(1/2)/(-b*x^4+a)^(1/2)*EllipticPi(x*(1/a^(1/2)*b^(1/2))^(1/ 
2),a^(1/2)/b^(1/2)*_alpha^2/c*d,(-1/a^(1/2)*b^(1/2))^(1/2)/(1/a^(1/2)*b^(1 
/2))^(1/2))),_alpha=RootOf(_Z^4*d-c))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (a-b x^4\right )^{3/2}}{\left (c-d x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate((-b*x^4+a)^(3/2)/(-d*x^4+c)^2,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\left (a-b x^4\right )^{3/2}}{\left (c-d x^4\right )^2} \, dx=\int \frac {\left (a - b x^{4}\right )^{\frac {3}{2}}}{\left (- c + d x^{4}\right )^{2}}\, dx \] Input:

integrate((-b*x**4+a)**(3/2)/(-d*x**4+c)**2,x)
 

Output:

Integral((a - b*x**4)**(3/2)/(-c + d*x**4)**2, x)
 

Maxima [F]

\[ \int \frac {\left (a-b x^4\right )^{3/2}}{\left (c-d x^4\right )^2} \, dx=\int { \frac {{\left (-b x^{4} + a\right )}^{\frac {3}{2}}}{{\left (d x^{4} - c\right )}^{2}} \,d x } \] Input:

integrate((-b*x^4+a)^(3/2)/(-d*x^4+c)^2,x, algorithm="maxima")
 

Output:

integrate((-b*x^4 + a)^(3/2)/(d*x^4 - c)^2, x)
 

Giac [F]

\[ \int \frac {\left (a-b x^4\right )^{3/2}}{\left (c-d x^4\right )^2} \, dx=\int { \frac {{\left (-b x^{4} + a\right )}^{\frac {3}{2}}}{{\left (d x^{4} - c\right )}^{2}} \,d x } \] Input:

integrate((-b*x^4+a)^(3/2)/(-d*x^4+c)^2,x, algorithm="giac")
 

Output:

integrate((-b*x^4 + a)^(3/2)/(d*x^4 - c)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a-b x^4\right )^{3/2}}{\left (c-d x^4\right )^2} \, dx=\int \frac {{\left (a-b\,x^4\right )}^{3/2}}{{\left (c-d\,x^4\right )}^2} \,d x \] Input:

int((a - b*x^4)^(3/2)/(c - d*x^4)^2,x)
 

Output:

int((a - b*x^4)^(3/2)/(c - d*x^4)^2, x)
 

Reduce [F]

\[ \int \frac {\left (a-b x^4\right )^{3/2}}{\left (c-d x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int((-b*x^4+a)^(3/2)/(-d*x^4+c)^2,x)
 

Output:

( - 2*sqrt(a - b*x**4)*a*b*x + 3*int(sqrt(a - b*x**4)/(a**2*c**2*d - 2*a** 
2*c*d**2*x**4 + a**2*d**3*x**8 - a*b*c**3 + a*b*c**2*d*x**4 + a*b*c*d**2*x 
**8 - a*b*d**3*x**12 + b**2*c**3*x**4 - 2*b**2*c**2*d*x**8 + b**2*c*d**2*x 
**12),x)*a**4*c*d**2 - 3*int(sqrt(a - b*x**4)/(a**2*c**2*d - 2*a**2*c*d**2 
*x**4 + a**2*d**3*x**8 - a*b*c**3 + a*b*c**2*d*x**4 + a*b*c*d**2*x**8 - a* 
b*d**3*x**12 + b**2*c**3*x**4 - 2*b**2*c**2*d*x**8 + b**2*c*d**2*x**12),x) 
*a**4*d**3*x**4 - 4*int(sqrt(a - b*x**4)/(a**2*c**2*d - 2*a**2*c*d**2*x**4 
 + a**2*d**3*x**8 - a*b*c**3 + a*b*c**2*d*x**4 + a*b*c*d**2*x**8 - a*b*d** 
3*x**12 + b**2*c**3*x**4 - 2*b**2*c**2*d*x**8 + b**2*c*d**2*x**12),x)*a**3 
*b*c**2*d + 4*int(sqrt(a - b*x**4)/(a**2*c**2*d - 2*a**2*c*d**2*x**4 + a** 
2*d**3*x**8 - a*b*c**3 + a*b*c**2*d*x**4 + a*b*c*d**2*x**8 - a*b*d**3*x**1 
2 + b**2*c**3*x**4 - 2*b**2*c**2*d*x**8 + b**2*c*d**2*x**12),x)*a**3*b*c*d 
**2*x**4 + int(sqrt(a - b*x**4)/(a**2*c**2*d - 2*a**2*c*d**2*x**4 + a**2*d 
**3*x**8 - a*b*c**3 + a*b*c**2*d*x**4 + a*b*c*d**2*x**8 - a*b*d**3*x**12 + 
 b**2*c**3*x**4 - 2*b**2*c**2*d*x**8 + b**2*c*d**2*x**12),x)*a**2*b**2*c** 
3 - int(sqrt(a - b*x**4)/(a**2*c**2*d - 2*a**2*c*d**2*x**4 + a**2*d**3*x** 
8 - a*b*c**3 + a*b*c**2*d*x**4 + a*b*c*d**2*x**8 - a*b*d**3*x**12 + b**2*c 
**3*x**4 - 2*b**2*c**2*d*x**8 + b**2*c*d**2*x**12),x)*a**2*b**2*c**2*d*x** 
4 + int((sqrt(a - b*x**4)*x**8)/(a**2*c**2*d - 2*a**2*c*d**2*x**4 + a**2*d 
**3*x**8 - a*b*c**3 + a*b*c**2*d*x**4 + a*b*c*d**2*x**8 - a*b*d**3*x**1...