\(\int \frac {(a+\frac {b}{x})^{5/2}}{c+\frac {d}{x}} \, dx\) [22]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 134 \[ \int \frac {\left (a+\frac {b}{x}\right )^{5/2}}{c+\frac {d}{x}} \, dx=-\frac {b (2 b c+a d) \sqrt {a+\frac {b}{x}}}{c d}+\frac {a \left (a+\frac {b}{x}\right )^{3/2} x}{c}+\frac {2 (b c-a d)^{5/2} \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{c^2 d^{3/2}}+\frac {a^{3/2} (5 b c-2 a d) \text {arctanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{c^2} \] Output:

-b*(a*d+2*b*c)*(a+b/x)^(1/2)/c/d+a*(a+b/x)^(3/2)*x/c+2*(-a*d+b*c)^(5/2)*ar 
ctan(d^(1/2)*(a+b/x)^(1/2)/(-a*d+b*c)^(1/2))/c^2/d^(3/2)+a^(3/2)*(-2*a*d+5 
*b*c)*arctanh((a+b/x)^(1/2)/a^(1/2))/c^2
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.87 \[ \int \frac {\left (a+\frac {b}{x}\right )^{5/2}}{c+\frac {d}{x}} \, dx=\frac {\frac {c \sqrt {a+\frac {b}{x}} \left (-2 b^2 c+a^2 d x\right )}{d}+\frac {2 (b c-a d)^{5/2} \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{d^{3/2}}-a^{3/2} (-5 b c+2 a d) \text {arctanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{c^2} \] Input:

Integrate[(a + b/x)^(5/2)/(c + d/x),x]
 

Output:

((c*Sqrt[a + b/x]*(-2*b^2*c + a^2*d*x))/d + (2*(b*c - a*d)^(5/2)*ArcTan[(S 
qrt[d]*Sqrt[a + b/x])/Sqrt[b*c - a*d]])/d^(3/2) - a^(3/2)*(-5*b*c + 2*a*d) 
*ArcTanh[Sqrt[a + b/x]/Sqrt[a]])/c^2
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.09, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {899, 109, 27, 171, 27, 174, 73, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+\frac {b}{x}\right )^{5/2}}{c+\frac {d}{x}} \, dx\)

\(\Big \downarrow \) 899

\(\displaystyle -\int \frac {\left (a+\frac {b}{x}\right )^{5/2} x^2}{c+\frac {d}{x}}d\frac {1}{x}\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {\int -\frac {\sqrt {a+\frac {b}{x}} \left (a (5 b c-2 a d)+\frac {b (2 b c+a d)}{x}\right ) x}{2 \left (c+\frac {d}{x}\right )}d\frac {1}{x}}{c}+\frac {a x \left (a+\frac {b}{x}\right )^{3/2}}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a x \left (a+\frac {b}{x}\right )^{3/2}}{c}-\frac {\int \frac {\sqrt {a+\frac {b}{x}} \left (a (5 b c-2 a d)+\frac {b (2 b c+a d)}{x}\right ) x}{c+\frac {d}{x}}d\frac {1}{x}}{2 c}\)

\(\Big \downarrow \) 171

\(\displaystyle \frac {a x \left (a+\frac {b}{x}\right )^{3/2}}{c}-\frac {\frac {2 \int \frac {\left (a^2 d (5 b c-2 a d)-\frac {b \left (2 b^2 c^2-6 a b d c+a^2 d^2\right )}{x}\right ) x}{2 \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}d\frac {1}{x}}{d}+\frac {2 b \sqrt {a+\frac {b}{x}} (a d+2 b c)}{d}}{2 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a x \left (a+\frac {b}{x}\right )^{3/2}}{c}-\frac {\frac {\int \frac {\left (a^2 d (5 b c-2 a d)-\frac {b \left (2 b^2 c^2-6 a b d c+a^2 d^2\right )}{x}\right ) x}{\sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}d\frac {1}{x}}{d}+\frac {2 b \sqrt {a+\frac {b}{x}} (a d+2 b c)}{d}}{2 c}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {a x \left (a+\frac {b}{x}\right )^{3/2}}{c}-\frac {\frac {\frac {a^2 d (5 b c-2 a d) \int \frac {x}{\sqrt {a+\frac {b}{x}}}d\frac {1}{x}}{c}-\frac {2 (b c-a d)^3 \int \frac {1}{\sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}d\frac {1}{x}}{c}}{d}+\frac {2 b \sqrt {a+\frac {b}{x}} (a d+2 b c)}{d}}{2 c}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {a x \left (a+\frac {b}{x}\right )^{3/2}}{c}-\frac {\frac {\frac {2 a^2 d (5 b c-2 a d) \int \frac {1}{\frac {1}{b x^2}-\frac {a}{b}}d\sqrt {a+\frac {b}{x}}}{b c}-\frac {4 (b c-a d)^3 \int \frac {1}{c-\frac {a d}{b}+\frac {d}{b x^2}}d\sqrt {a+\frac {b}{x}}}{b c}}{d}+\frac {2 b \sqrt {a+\frac {b}{x}} (a d+2 b c)}{d}}{2 c}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {a x \left (a+\frac {b}{x}\right )^{3/2}}{c}-\frac {\frac {\frac {2 a^2 d (5 b c-2 a d) \int \frac {1}{\frac {1}{b x^2}-\frac {a}{b}}d\sqrt {a+\frac {b}{x}}}{b c}-\frac {4 (b c-a d)^{5/2} \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{c \sqrt {d}}}{d}+\frac {2 b \sqrt {a+\frac {b}{x}} (a d+2 b c)}{d}}{2 c}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {a x \left (a+\frac {b}{x}\right )^{3/2}}{c}-\frac {\frac {-\frac {2 a^{3/2} d \text {arctanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right ) (5 b c-2 a d)}{c}-\frac {4 (b c-a d)^{5/2} \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{c \sqrt {d}}}{d}+\frac {2 b \sqrt {a+\frac {b}{x}} (a d+2 b c)}{d}}{2 c}\)

Input:

Int[(a + b/x)^(5/2)/(c + d/x),x]
 

Output:

(a*(a + b/x)^(3/2)*x)/c - ((2*b*(2*b*c + a*d)*Sqrt[a + b/x])/d + ((-4*(b*c 
 - a*d)^(5/2)*ArcTan[(Sqrt[d]*Sqrt[a + b/x])/Sqrt[b*c - a*d]])/(c*Sqrt[d]) 
 - (2*a^(3/2)*d*(5*b*c - 2*a*d)*ArcTanh[Sqrt[a + b/x]/Sqrt[a]])/c)/d)/(2*c 
)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 171
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*(( 
e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p + 2)) 
  Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2 
) - h*(b*c*e*m + a*(d*e*(n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) 
+ h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] 
 && IntegersQ[2*m, 2*n, 2*p]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 899
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol 
] :> -Subst[Int[(a + b/x^n)^p*((c + d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, 
 b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(277\) vs. \(2(114)=228\).

Time = 0.51 (sec) , antiderivative size = 278, normalized size of antiderivative = 2.07

method result size
risch \(\frac {\left (a^{2} d x -2 b^{2} c \right ) \sqrt {\frac {a x +b}{x}}}{d c}-\frac {\left (\frac {2 \left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right ) \ln \left (\frac {\frac {2 \left (a d -b c \right ) d}{c^{2}}-\frac {\left (2 a d -b c \right ) \left (x +\frac {d}{c}\right )}{c}+2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {a \left (x +\frac {d}{c}\right )^{2}-\frac {\left (2 a d -b c \right ) \left (x +\frac {d}{c}\right )}{c}+\frac {\left (a d -b c \right ) d}{c^{2}}}}{x +\frac {d}{c}}\right )}{c^{2} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}}+\frac {d \,a^{\frac {3}{2}} \left (2 a d -5 b c \right ) \ln \left (\frac {\frac {b}{2}+a x}{\sqrt {a}}+\sqrt {a \,x^{2}+b x}\right )}{c}\right ) \sqrt {\frac {a x +b}{x}}\, \sqrt {x \left (a x +b \right )}}{2 c d \left (a x +b \right )}\) \(278\)
default \(\frac {\sqrt {\frac {a x +b}{x}}\, \left (2 \sqrt {x \left (a x +b \right )}\, a^{\frac {5}{2}} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, c^{2} d^{2} x^{2}-4 \sqrt {x \left (a x +b \right )}\, a^{\frac {3}{2}} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b \,c^{3} d \,x^{2}+2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}\, \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b^{2} c^{4} x^{2}+8 \sqrt {a \,x^{2}+b x}\, a^{\frac {3}{2}} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b \,c^{3} d \,x^{2}-2 \sqrt {a \,x^{2}+b x}\, \sqrt {a}\, \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b^{2} c^{4} x^{2}+4 \ln \left (\frac {2 \sqrt {a \,x^{2}+b x}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a \,b^{2} c^{3} d \,x^{2}-\ln \left (\frac {2 \sqrt {a \,x^{2}+b x}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b^{3} c^{4} x^{2}-2 a^{\frac {7}{2}} \ln \left (\frac {2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {x \left (a x +b \right )}\, c -2 a d x +b c x -b d}{c x +d}\right ) d^{4} x^{2}+6 a^{\frac {5}{2}} \ln \left (\frac {2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {x \left (a x +b \right )}\, c -2 a d x +b c x -b d}{c x +d}\right ) b c \,d^{3} x^{2}-6 a^{\frac {3}{2}} \ln \left (\frac {2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {x \left (a x +b \right )}\, c -2 a d x +b c x -b d}{c x +d}\right ) b^{2} c^{2} d^{2} x^{2}+2 \sqrt {a}\, \ln \left (\frac {2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {x \left (a x +b \right )}\, c -2 a d x +b c x -b d}{c x +d}\right ) b^{3} c^{3} d \,x^{2}-2 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a^{3} c \,d^{3} x^{2}+5 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a^{2} b \,c^{2} d^{2} x^{2}-4 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a \,b^{2} c^{3} d \,x^{2}+\ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b^{3} c^{4} x^{2}-4 \left (a \,x^{2}+b x \right )^{\frac {3}{2}} \sqrt {a}\, \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b \,c^{3} d \right )}{2 x \sqrt {x \left (a x +b \right )}\, d^{2} \sqrt {a}\, c^{3} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}}\) \(859\)

Input:

int((a+b/x)^(5/2)/(c+1/x*d),x,method=_RETURNVERBOSE)
 

Output:

(a^2*d*x-2*b^2*c)/d/c*((a*x+b)/x)^(1/2)-1/2/c/d*(2*(a^3*d^3-3*a^2*b*c*d^2+ 
3*a*b^2*c^2*d-b^3*c^3)/c^2/((a*d-b*c)*d/c^2)^(1/2)*ln((2*(a*d-b*c)*d/c^2-( 
2*a*d-b*c)/c*(x+1/c*d)+2*((a*d-b*c)*d/c^2)^(1/2)*(a*(x+1/c*d)^2-(2*a*d-b*c 
)/c*(x+1/c*d)+(a*d-b*c)*d/c^2)^(1/2))/(x+1/c*d))+d*a^(3/2)*(2*a*d-5*b*c)/c 
*ln((1/2*b+a*x)/a^(1/2)+(a*x^2+b*x)^(1/2)))*((a*x+b)/x)^(1/2)*(x*(a*x+b))^ 
(1/2)/(a*x+b)
 

Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 669, normalized size of antiderivative = 4.99 \[ \int \frac {\left (a+\frac {b}{x}\right )^{5/2}}{c+\frac {d}{x}} \, dx=\left [-\frac {{\left (5 \, a b c d - 2 \, a^{2} d^{2}\right )} \sqrt {a} \log \left (2 \, a x - 2 \, \sqrt {a} x \sqrt {\frac {a x + b}{x}} + b\right ) - 2 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {-\frac {b c - a d}{d}} \log \left (\frac {2 \, d x \sqrt {-\frac {b c - a d}{d}} \sqrt {\frac {a x + b}{x}} + b d - {\left (b c - 2 \, a d\right )} x}{c x + d}\right ) - 2 \, {\left (a^{2} c d x - 2 \, b^{2} c^{2}\right )} \sqrt {\frac {a x + b}{x}}}{2 \, c^{2} d}, -\frac {{\left (5 \, a b c d - 2 \, a^{2} d^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} x \sqrt {\frac {a x + b}{x}}}{a x + b}\right ) - {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {-\frac {b c - a d}{d}} \log \left (\frac {2 \, d x \sqrt {-\frac {b c - a d}{d}} \sqrt {\frac {a x + b}{x}} + b d - {\left (b c - 2 \, a d\right )} x}{c x + d}\right ) - {\left (a^{2} c d x - 2 \, b^{2} c^{2}\right )} \sqrt {\frac {a x + b}{x}}}{c^{2} d}, -\frac {4 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {\frac {b c - a d}{d}} \arctan \left (-\frac {d \sqrt {\frac {b c - a d}{d}} \sqrt {\frac {a x + b}{x}}}{b c - a d}\right ) + {\left (5 \, a b c d - 2 \, a^{2} d^{2}\right )} \sqrt {a} \log \left (2 \, a x - 2 \, \sqrt {a} x \sqrt {\frac {a x + b}{x}} + b\right ) - 2 \, {\left (a^{2} c d x - 2 \, b^{2} c^{2}\right )} \sqrt {\frac {a x + b}{x}}}{2 \, c^{2} d}, -\frac {{\left (5 \, a b c d - 2 \, a^{2} d^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} x \sqrt {\frac {a x + b}{x}}}{a x + b}\right ) + 2 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {\frac {b c - a d}{d}} \arctan \left (-\frac {d \sqrt {\frac {b c - a d}{d}} \sqrt {\frac {a x + b}{x}}}{b c - a d}\right ) - {\left (a^{2} c d x - 2 \, b^{2} c^{2}\right )} \sqrt {\frac {a x + b}{x}}}{c^{2} d}\right ] \] Input:

integrate((a+b/x)^(5/2)/(c+d/x),x, algorithm="fricas")
 

Output:

[-1/2*((5*a*b*c*d - 2*a^2*d^2)*sqrt(a)*log(2*a*x - 2*sqrt(a)*x*sqrt((a*x + 
 b)/x) + b) - 2*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-(b*c - a*d)/d)*log(( 
2*d*x*sqrt(-(b*c - a*d)/d)*sqrt((a*x + b)/x) + b*d - (b*c - 2*a*d)*x)/(c*x 
 + d)) - 2*(a^2*c*d*x - 2*b^2*c^2)*sqrt((a*x + b)/x))/(c^2*d), -((5*a*b*c* 
d - 2*a^2*d^2)*sqrt(-a)*arctan(sqrt(-a)*x*sqrt((a*x + b)/x)/(a*x + b)) - ( 
b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-(b*c - a*d)/d)*log((2*d*x*sqrt(-(b*c 
- a*d)/d)*sqrt((a*x + b)/x) + b*d - (b*c - 2*a*d)*x)/(c*x + d)) - (a^2*c*d 
*x - 2*b^2*c^2)*sqrt((a*x + b)/x))/(c^2*d), -1/2*(4*(b^2*c^2 - 2*a*b*c*d + 
 a^2*d^2)*sqrt((b*c - a*d)/d)*arctan(-d*sqrt((b*c - a*d)/d)*sqrt((a*x + b) 
/x)/(b*c - a*d)) + (5*a*b*c*d - 2*a^2*d^2)*sqrt(a)*log(2*a*x - 2*sqrt(a)*x 
*sqrt((a*x + b)/x) + b) - 2*(a^2*c*d*x - 2*b^2*c^2)*sqrt((a*x + b)/x))/(c^ 
2*d), -((5*a*b*c*d - 2*a^2*d^2)*sqrt(-a)*arctan(sqrt(-a)*x*sqrt((a*x + b)/ 
x)/(a*x + b)) + 2*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt((b*c - a*d)/d)*arct 
an(-d*sqrt((b*c - a*d)/d)*sqrt((a*x + b)/x)/(b*c - a*d)) - (a^2*c*d*x - 2* 
b^2*c^2)*sqrt((a*x + b)/x))/(c^2*d)]
 

Sympy [F]

\[ \int \frac {\left (a+\frac {b}{x}\right )^{5/2}}{c+\frac {d}{x}} \, dx=\int \frac {x \left (a + \frac {b}{x}\right )^{\frac {5}{2}}}{c x + d}\, dx \] Input:

integrate((a+b/x)**(5/2)/(c+d/x),x)
 

Output:

Integral(x*(a + b/x)**(5/2)/(c*x + d), x)
 

Maxima [F]

\[ \int \frac {\left (a+\frac {b}{x}\right )^{5/2}}{c+\frac {d}{x}} \, dx=\int { \frac {{\left (a + \frac {b}{x}\right )}^{\frac {5}{2}}}{c + \frac {d}{x}} \,d x } \] Input:

integrate((a+b/x)^(5/2)/(c+d/x),x, algorithm="maxima")
 

Output:

integrate((a + b/x)^(5/2)/(c + d/x), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (a+\frac {b}{x}\right )^{5/2}}{c+\frac {d}{x}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b/x)^(5/2)/(c+d/x),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 

Mupad [B] (verification not implemented)

Time = 1.44 (sec) , antiderivative size = 1427, normalized size of antiderivative = 10.65 \[ \int \frac {\left (a+\frac {b}{x}\right )^{5/2}}{c+\frac {d}{x}} \, dx =\text {Too large to display} \] Input:

int((a + b/x)^(5/2)/(c + d/x),x)
 

Output:

(atan((a^3*b^5*(a + b/x)^(1/2)*(a^5*d^8 - b^5*c^5*d^3 + 5*a*b^4*c^4*d^4 - 
10*a^2*b^3*c^3*d^5 + 10*a^3*b^2*c^2*d^6 - 5*a^4*b*c*d^7)^(1/2)*160i)/(448* 
a^3*b^8*c^3*d - 340*a^6*b^5*d^4 - 128*a^2*b^9*c^4 + 740*a^5*b^6*c*d^3 + (1 
6*a*b^10*c^5)/d - 796*a^4*b^7*c^2*d^2 + (60*a^7*b^4*d^5)/c) - (a^2*b^6*(a 
+ b/x)^(1/2)*(a^5*d^8 - b^5*c^5*d^3 + 5*a*b^4*c^4*d^4 - 10*a^2*b^3*c^3*d^5 
 + 10*a^3*b^2*c^2*d^6 - 5*a^4*b*c*d^7)^(1/2)*80i)/(16*a*b^10*c^4 + 740*a^5 
*b^6*d^4 - 128*a^2*b^9*c^3*d - 796*a^4*b^7*c*d^3 + 448*a^3*b^8*c^2*d^2 - ( 
340*a^6*b^5*d^5)/c + (60*a^7*b^4*d^6)/c^2) - (a^4*b^4*(a + b/x)^(1/2)*(a^5 
*d^8 - b^5*c^5*d^3 + 5*a*b^4*c^4*d^4 - 10*a^2*b^3*c^3*d^5 + 10*a^3*b^2*c^2 
*d^6 - 5*a^4*b*c*d^7)^(1/2)*60i)/(448*a^3*b^8*c^4 + 60*a^7*b^4*d^4 - 796*a 
^4*b^7*c^3*d - 340*a^6*b^5*c*d^3 + (16*a*b^10*c^6)/d^2 + 740*a^5*b^6*c^2*d 
^2 - (128*a^2*b^9*c^5)/d) + (a*b^7*c*(a + b/x)^(1/2)*(a^5*d^8 - b^5*c^5*d^ 
3 + 5*a*b^4*c^4*d^4 - 10*a^2*b^3*c^3*d^5 + 10*a^3*b^2*c^2*d^6 - 5*a^4*b*c* 
d^7)^(1/2)*16i)/(740*a^5*b^6*d^5 - 796*a^4*b^7*c*d^4 - 128*a^2*b^9*c^3*d^2 
 + 448*a^3*b^8*c^2*d^3 - (340*a^6*b^5*d^6)/c + (60*a^7*b^4*d^7)/c^2 + 16*a 
*b^10*c^4*d))*(d^3*(a*d - b*c)^5)^(1/2)*2i)/(c^2*d^3) - (2*b^2*(a + b/x)^( 
1/2))/d + (atan((b^9*c^3*(a + b/x)^(1/2)*(a^3)^(1/2)*40i)/(40*a^2*b^9*c^3 
- 790*a^5*b^6*d^3 - 256*a^3*b^8*c^2*d + 696*a^4*b^7*c*d^2 + (370*a^6*b^5*d 
^4)/c - (60*a^7*b^4*d^5)/c^2) + (a*b^8*c^2*(a + b/x)^(1/2)*(a^3)^(1/2)*256 
i)/(256*a^3*b^8*c^2 + 790*a^5*b^6*d^2 - (40*a^2*b^9*c^3)/d - (370*a^6*b...
 

Reduce [B] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 677, normalized size of antiderivative = 5.05 \[ \int \frac {\left (a+\frac {b}{x}\right )^{5/2}}{c+\frac {d}{x}} \, dx=\frac {4 \sqrt {d}\, \sqrt {a d -b c}\, \mathrm {log}\left (\sqrt {c}\, \sqrt {a x +b}-\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {x}\, \sqrt {c}\, \sqrt {a}\right ) a^{2} d^{2} x -8 \sqrt {d}\, \sqrt {a d -b c}\, \mathrm {log}\left (\sqrt {c}\, \sqrt {a x +b}-\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {x}\, \sqrt {c}\, \sqrt {a}\right ) a b c d x +4 \sqrt {d}\, \sqrt {a d -b c}\, \mathrm {log}\left (\sqrt {c}\, \sqrt {a x +b}-\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {x}\, \sqrt {c}\, \sqrt {a}\right ) b^{2} c^{2} x +4 \sqrt {d}\, \sqrt {a d -b c}\, \mathrm {log}\left (\sqrt {c}\, \sqrt {a x +b}+\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {x}\, \sqrt {c}\, \sqrt {a}\right ) a^{2} d^{2} x -8 \sqrt {d}\, \sqrt {a d -b c}\, \mathrm {log}\left (\sqrt {c}\, \sqrt {a x +b}+\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {x}\, \sqrt {c}\, \sqrt {a}\right ) a b c d x +4 \sqrt {d}\, \sqrt {a d -b c}\, \mathrm {log}\left (\sqrt {c}\, \sqrt {a x +b}+\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {x}\, \sqrt {c}\, \sqrt {a}\right ) b^{2} c^{2} x -4 \sqrt {d}\, \sqrt {a d -b c}\, \mathrm {log}\left (2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}+2 \sqrt {x}\, \sqrt {a}\, \sqrt {a x +b}\, c +2 a c x +2 a d \right ) a^{2} d^{2} x +8 \sqrt {d}\, \sqrt {a d -b c}\, \mathrm {log}\left (2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}+2 \sqrt {x}\, \sqrt {a}\, \sqrt {a x +b}\, c +2 a c x +2 a d \right ) a b c d x -4 \sqrt {d}\, \sqrt {a d -b c}\, \mathrm {log}\left (2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}+2 \sqrt {x}\, \sqrt {a}\, \sqrt {a x +b}\, c +2 a c x +2 a d \right ) b^{2} c^{2} x +4 \sqrt {x}\, \sqrt {a x +b}\, a^{2} c \,d^{2} x -8 \sqrt {x}\, \sqrt {a x +b}\, b^{2} c^{2} d -8 \sqrt {a}\, \mathrm {log}\left (\frac {\sqrt {a x +b}+\sqrt {x}\, \sqrt {a}}{\sqrt {b}}\right ) a^{2} d^{3} x +20 \sqrt {a}\, \mathrm {log}\left (\frac {\sqrt {a x +b}+\sqrt {x}\, \sqrt {a}}{\sqrt {b}}\right ) a b c \,d^{2} x -\sqrt {a}\, a b c \,d^{2} x -8 \sqrt {a}\, b^{2} c^{2} d x}{4 c^{2} d^{2} x} \] Input:

int((a+b/x)^(5/2)/(c+d/x),x)
 

Output:

(4*sqrt(d)*sqrt(a*d - b*c)*log(sqrt(c)*sqrt(a*x + b) - sqrt(2*sqrt(d)*sqrt 
(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(x)*sqrt(c)*sqrt(a))*a**2*d**2*x 
- 8*sqrt(d)*sqrt(a*d - b*c)*log(sqrt(c)*sqrt(a*x + b) - sqrt(2*sqrt(d)*sqr 
t(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(x)*sqrt(c)*sqrt(a))*a*b*c*d*x + 
 4*sqrt(d)*sqrt(a*d - b*c)*log(sqrt(c)*sqrt(a*x + b) - sqrt(2*sqrt(d)*sqrt 
(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(x)*sqrt(c)*sqrt(a))*b**2*c**2*x 
+ 4*sqrt(d)*sqrt(a*d - b*c)*log(sqrt(c)*sqrt(a*x + b) + sqrt(2*sqrt(d)*sqr 
t(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(x)*sqrt(c)*sqrt(a))*a**2*d**2*x 
 - 8*sqrt(d)*sqrt(a*d - b*c)*log(sqrt(c)*sqrt(a*x + b) + sqrt(2*sqrt(d)*sq 
rt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(x)*sqrt(c)*sqrt(a))*a*b*c*d*x 
+ 4*sqrt(d)*sqrt(a*d - b*c)*log(sqrt(c)*sqrt(a*x + b) + sqrt(2*sqrt(d)*sqr 
t(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(x)*sqrt(c)*sqrt(a))*b**2*c**2*x 
 - 4*sqrt(d)*sqrt(a*d - b*c)*log(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) + 2*sqr 
t(x)*sqrt(a)*sqrt(a*x + b)*c + 2*a*c*x + 2*a*d)*a**2*d**2*x + 8*sqrt(d)*sq 
rt(a*d - b*c)*log(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) + 2*sqrt(x)*sqrt(a)*sq 
rt(a*x + b)*c + 2*a*c*x + 2*a*d)*a*b*c*d*x - 4*sqrt(d)*sqrt(a*d - b*c)*log 
(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) + 2*sqrt(x)*sqrt(a)*sqrt(a*x + b)*c + 2 
*a*c*x + 2*a*d)*b**2*c**2*x + 4*sqrt(x)*sqrt(a*x + b)*a**2*c*d**2*x - 8*sq 
rt(x)*sqrt(a*x + b)*b**2*c**2*d - 8*sqrt(a)*log((sqrt(a*x + b) + sqrt(x)*s 
qrt(a))/sqrt(b))*a**2*d**3*x + 20*sqrt(a)*log((sqrt(a*x + b) + sqrt(x)*...