\(\int \frac {1}{(a+\frac {b}{x})^{3/2} (c+\frac {d}{x})} \, dx\) [36]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 147 \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )} \, dx=\frac {b (3 b c-a d)}{a^2 c (b c-a d) \sqrt {a+\frac {b}{x}}}+\frac {x}{a c \sqrt {a+\frac {b}{x}}}+\frac {2 d^{5/2} \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{c^2 (b c-a d)^{3/2}}-\frac {(3 b c+2 a d) \text {arctanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{5/2} c^2} \] Output:

b*(-a*d+3*b*c)/a^2/c/(-a*d+b*c)/(a+b/x)^(1/2)+x/a/c/(a+b/x)^(1/2)+2*d^(5/2 
)*arctan(d^(1/2)*(a+b/x)^(1/2)/(-a*d+b*c)^(1/2))/c^2/(-a*d+b*c)^(3/2)-(2*a 
*d+3*b*c)*arctanh((a+b/x)^(1/2)/a^(1/2))/a^(5/2)/c^2
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.73 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.98 \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )} \, dx=\frac {\frac {c \sqrt {a+\frac {b}{x}} x \left (-3 b^2 c+a^2 d x+a b (d-c x)\right )}{a^2 (-b c+a d) (b+a x)}+\frac {2 d^{5/2} \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{(b c-a d)^{3/2}}-\frac {(3 b c+2 a d) \text {arctanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{5/2}}}{c^2} \] Input:

Integrate[1/((a + b/x)^(3/2)*(c + d/x)),x]
 

Output:

((c*Sqrt[a + b/x]*x*(-3*b^2*c + a^2*d*x + a*b*(d - c*x)))/(a^2*(-(b*c) + a 
*d)*(b + a*x)) + (2*d^(5/2)*ArcTan[(Sqrt[d]*Sqrt[a + b/x])/Sqrt[b*c - a*d] 
])/(b*c - a*d)^(3/2) - ((3*b*c + 2*a*d)*ArcTanh[Sqrt[a + b/x]/Sqrt[a]])/a^ 
(5/2))/c^2
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.24, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {899, 114, 27, 169, 27, 174, 73, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )} \, dx\)

\(\Big \downarrow \) 899

\(\displaystyle -\int \frac {x^2}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )}d\frac {1}{x}\)

\(\Big \downarrow \) 114

\(\displaystyle \frac {\int \frac {\left (3 b c+2 a d+\frac {3 b d}{x}\right ) x}{2 \left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )}d\frac {1}{x}}{a c}+\frac {x}{a c \sqrt {a+\frac {b}{x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\left (3 b c+2 a d+\frac {3 b d}{x}\right ) x}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )}d\frac {1}{x}}{2 a c}+\frac {x}{a c \sqrt {a+\frac {b}{x}}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {\frac {2 \int \frac {\left (\frac {b d (3 b c-a d)}{x}+(b c-a d) (3 b c+2 a d)\right ) x}{2 \sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}d\frac {1}{x}}{a (b c-a d)}+\frac {2 b (3 b c-a d)}{a \sqrt {a+\frac {b}{x}} (b c-a d)}}{2 a c}+\frac {x}{a c \sqrt {a+\frac {b}{x}}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\left (\frac {b d (3 b c-a d)}{x}+(b c-a d) (3 b c+2 a d)\right ) x}{\sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}d\frac {1}{x}}{a (b c-a d)}+\frac {2 b (3 b c-a d)}{a \sqrt {a+\frac {b}{x}} (b c-a d)}}{2 a c}+\frac {x}{a c \sqrt {a+\frac {b}{x}}}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {\frac {\frac {2 a^2 d^3 \int \frac {1}{\sqrt {a+\frac {b}{x}} \left (c+\frac {d}{x}\right )}d\frac {1}{x}}{c}+\frac {(b c-a d) (2 a d+3 b c) \int \frac {x}{\sqrt {a+\frac {b}{x}}}d\frac {1}{x}}{c}}{a (b c-a d)}+\frac {2 b (3 b c-a d)}{a \sqrt {a+\frac {b}{x}} (b c-a d)}}{2 a c}+\frac {x}{a c \sqrt {a+\frac {b}{x}}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\frac {\frac {4 a^2 d^3 \int \frac {1}{c-\frac {a d}{b}+\frac {d}{b x^2}}d\sqrt {a+\frac {b}{x}}}{b c}+\frac {2 (b c-a d) (2 a d+3 b c) \int \frac {1}{\frac {1}{b x^2}-\frac {a}{b}}d\sqrt {a+\frac {b}{x}}}{b c}}{a (b c-a d)}+\frac {2 b (3 b c-a d)}{a \sqrt {a+\frac {b}{x}} (b c-a d)}}{2 a c}+\frac {x}{a c \sqrt {a+\frac {b}{x}}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {2 (b c-a d) (2 a d+3 b c) \int \frac {1}{\frac {1}{b x^2}-\frac {a}{b}}d\sqrt {a+\frac {b}{x}}}{b c}+\frac {4 a^2 d^{5/2} \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{c \sqrt {b c-a d}}}{a (b c-a d)}+\frac {2 b (3 b c-a d)}{a \sqrt {a+\frac {b}{x}} (b c-a d)}}{2 a c}+\frac {x}{a c \sqrt {a+\frac {b}{x}}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\frac {4 a^2 d^{5/2} \arctan \left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{c \sqrt {b c-a d}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right ) (b c-a d) (2 a d+3 b c)}{\sqrt {a} c}}{a (b c-a d)}+\frac {2 b (3 b c-a d)}{a \sqrt {a+\frac {b}{x}} (b c-a d)}}{2 a c}+\frac {x}{a c \sqrt {a+\frac {b}{x}}}\)

Input:

Int[1/((a + b/x)^(3/2)*(c + d/x)),x]
 

Output:

x/(a*c*Sqrt[a + b/x]) + ((2*b*(3*b*c - a*d))/(a*(b*c - a*d)*Sqrt[a + b/x]) 
 + ((4*a^2*d^(5/2)*ArcTan[(Sqrt[d]*Sqrt[a + b/x])/Sqrt[b*c - a*d]])/(c*Sqr 
t[b*c - a*d]) - (2*(b*c - a*d)*(3*b*c + 2*a*d)*ArcTanh[Sqrt[a + b/x]/Sqrt[ 
a]])/(Sqrt[a]*c))/(a*(b*c - a*d)))/(2*a*c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 899
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol 
] :> -Subst[Int[(a + b/x^n)^p*((c + d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, 
 b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(296\) vs. \(2(127)=254\).

Time = 0.63 (sec) , antiderivative size = 297, normalized size of antiderivative = 2.02

method result size
risch \(\frac {a x +b}{a^{2} c \sqrt {\frac {a x +b}{x}}}-\frac {\left (\frac {\left (2 a d +3 b c \right ) \ln \left (\frac {\frac {b}{2}+a x}{\sqrt {a}}+\sqrt {a \,x^{2}+b x}\right )}{c \sqrt {a}}+\frac {4 c \,b^{2} \sqrt {a \left (x +\frac {b}{a}\right )^{2}-b \left (x +\frac {b}{a}\right )}}{\left (a d -b c \right ) a \left (x +\frac {b}{a}\right )}+\frac {2 a^{2} d^{3} \ln \left (\frac {\frac {2 \left (a d -b c \right ) d}{c^{2}}-\frac {\left (2 a d -b c \right ) \left (x +\frac {d}{c}\right )}{c}+2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {a \left (x +\frac {d}{c}\right )^{2}-\frac {\left (2 a d -b c \right ) \left (x +\frac {d}{c}\right )}{c}+\frac {\left (a d -b c \right ) d}{c^{2}}}}{x +\frac {d}{c}}\right )}{c^{2} \left (a d -b c \right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}}\right ) \sqrt {x \left (a x +b \right )}}{2 a^{2} c x \sqrt {\frac {a x +b}{x}}}\) \(297\)
default \(\frac {\left (2 \sqrt {x \left (a x +b \right )}\, a^{\frac {7}{2}} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, c^{2} d \,x^{2}-6 \sqrt {x \left (a x +b \right )}\, a^{\frac {5}{2}} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b \,c^{3} x^{2}-2 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a^{4} c \,d^{2} x^{2}-\ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a^{3} b \,c^{2} d \,x^{2}+3 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a^{2} b^{2} c^{3} x^{2}-2 a^{\frac {9}{2}} \ln \left (\frac {2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {x \left (a x +b \right )}\, c -2 a d x +b c x -b d}{c x +d}\right ) d^{3} x^{2}+4 \left (x \left (a x +b \right )\right )^{\frac {3}{2}} a^{\frac {3}{2}} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b \,c^{3}+4 \sqrt {x \left (a x +b \right )}\, a^{\frac {5}{2}} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b \,c^{2} d x -12 \sqrt {x \left (a x +b \right )}\, a^{\frac {3}{2}} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b^{2} c^{3} x -4 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a^{3} b c \,d^{2} x -2 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a^{2} b^{2} c^{2} d x +6 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a \,b^{3} c^{3} x -4 a^{\frac {7}{2}} \ln \left (\frac {2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {x \left (a x +b \right )}\, c -2 a d x +b c x -b d}{c x +d}\right ) b \,d^{3} x +2 \sqrt {x \left (a x +b \right )}\, a^{\frac {3}{2}} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b^{2} c^{2} d -6 \sqrt {x \left (a x +b \right )}\, \sqrt {a}\, \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b^{3} c^{3}-2 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a^{2} b^{2} c \,d^{2}-\ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, a \,b^{3} c^{2} d +3 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, b^{4} c^{3}-2 a^{\frac {5}{2}} \ln \left (\frac {2 \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, \sqrt {x \left (a x +b \right )}\, c -2 a d x +b c x -b d}{c x +d}\right ) b^{2} d^{3}\right ) x \sqrt {\frac {a x +b}{x}}}{2 a^{\frac {5}{2}} \left (a x +b \right )^{2} \sqrt {\frac {\left (a d -b c \right ) d}{c^{2}}}\, c^{3} \left (a d -b c \right ) \sqrt {x \left (a x +b \right )}}\) \(964\)

Input:

int(1/(a+b/x)^(3/2)/(c+1/x*d),x,method=_RETURNVERBOSE)
 

Output:

1/a^2/c*(a*x+b)/((a*x+b)/x)^(1/2)-1/2/a^2/c*((2*a*d+3*b*c)/c*ln((1/2*b+a*x 
)/a^(1/2)+(a*x^2+b*x)^(1/2))/a^(1/2)+4*c*b^2/(a*d-b*c)/a/(x+b/a)*(a*(x+b/a 
)^2-b*(x+b/a))^(1/2)+2/c^2*a^2*d^3/(a*d-b*c)/((a*d-b*c)*d/c^2)^(1/2)*ln((2 
*(a*d-b*c)*d/c^2-(2*a*d-b*c)/c*(x+1/c*d)+2*((a*d-b*c)*d/c^2)^(1/2)*(a*(x+1 
/c*d)^2-(2*a*d-b*c)/c*(x+1/c*d)+(a*d-b*c)*d/c^2)^(1/2))/(x+1/c*d)))/x/((a* 
x+b)/x)^(1/2)*(x*(a*x+b))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 1045, normalized size of antiderivative = 7.11 \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )} \, dx =\text {Too large to display} \] Input:

integrate(1/(a+b/x)^(3/2)/(c+d/x),x, algorithm="fricas")
 

Output:

[1/2*((3*b^3*c^2 - a*b^2*c*d - 2*a^2*b*d^2 + (3*a*b^2*c^2 - a^2*b*c*d - 2* 
a^3*d^2)*x)*sqrt(a)*log(2*a*x - 2*sqrt(a)*x*sqrt((a*x + b)/x) + b) - 2*(a^ 
4*d^2*x + a^3*b*d^2)*sqrt(-d/(b*c - a*d))*log(-(2*(b*c - a*d)*x*sqrt(-d/(b 
*c - a*d))*sqrt((a*x + b)/x) - b*d + (b*c - 2*a*d)*x)/(c*x + d)) + 2*((a^2 
*b*c^2 - a^3*c*d)*x^2 + (3*a*b^2*c^2 - a^2*b*c*d)*x)*sqrt((a*x + b)/x))/(a 
^3*b^2*c^3 - a^4*b*c^2*d + (a^4*b*c^3 - a^5*c^2*d)*x), ((3*b^3*c^2 - a*b^2 
*c*d - 2*a^2*b*d^2 + (3*a*b^2*c^2 - a^2*b*c*d - 2*a^3*d^2)*x)*sqrt(-a)*arc 
tan(sqrt(-a)*x*sqrt((a*x + b)/x)/(a*x + b)) - (a^4*d^2*x + a^3*b*d^2)*sqrt 
(-d/(b*c - a*d))*log(-(2*(b*c - a*d)*x*sqrt(-d/(b*c - a*d))*sqrt((a*x + b) 
/x) - b*d + (b*c - 2*a*d)*x)/(c*x + d)) + ((a^2*b*c^2 - a^3*c*d)*x^2 + (3* 
a*b^2*c^2 - a^2*b*c*d)*x)*sqrt((a*x + b)/x))/(a^3*b^2*c^3 - a^4*b*c^2*d + 
(a^4*b*c^3 - a^5*c^2*d)*x), 1/2*(4*(a^4*d^2*x + a^3*b*d^2)*sqrt(d/(b*c - a 
*d))*arctan(sqrt(d/(b*c - a*d))*sqrt((a*x + b)/x)) + (3*b^3*c^2 - a*b^2*c* 
d - 2*a^2*b*d^2 + (3*a*b^2*c^2 - a^2*b*c*d - 2*a^3*d^2)*x)*sqrt(a)*log(2*a 
*x - 2*sqrt(a)*x*sqrt((a*x + b)/x) + b) + 2*((a^2*b*c^2 - a^3*c*d)*x^2 + ( 
3*a*b^2*c^2 - a^2*b*c*d)*x)*sqrt((a*x + b)/x))/(a^3*b^2*c^3 - a^4*b*c^2*d 
+ (a^4*b*c^3 - a^5*c^2*d)*x), ((3*b^3*c^2 - a*b^2*c*d - 2*a^2*b*d^2 + (3*a 
*b^2*c^2 - a^2*b*c*d - 2*a^3*d^2)*x)*sqrt(-a)*arctan(sqrt(-a)*x*sqrt((a*x 
+ b)/x)/(a*x + b)) + 2*(a^4*d^2*x + a^3*b*d^2)*sqrt(d/(b*c - a*d))*arctan( 
sqrt(d/(b*c - a*d))*sqrt((a*x + b)/x)) + ((a^2*b*c^2 - a^3*c*d)*x^2 + (...
 

Sympy [F]

\[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )} \, dx=\int \frac {x}{\left (a + \frac {b}{x}\right )^{\frac {3}{2}} \left (c x + d\right )}\, dx \] Input:

integrate(1/(a+b/x)**(3/2)/(c+d/x),x)
 

Output:

Integral(x/((a + b/x)**(3/2)*(c*x + d)), x)
 

Maxima [F]

\[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )} \, dx=\int { \frac {1}{{\left (a + \frac {b}{x}\right )}^{\frac {3}{2}} {\left (c + \frac {d}{x}\right )}} \,d x } \] Input:

integrate(1/(a+b/x)^(3/2)/(c+d/x),x, algorithm="maxima")
 

Output:

integrate(1/((a + b/x)^(3/2)*(c + d/x)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/(a+b/x)^(3/2)/(c+d/x),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 

Mupad [B] (verification not implemented)

Time = 2.29 (sec) , antiderivative size = 3000, normalized size of antiderivative = 20.41 \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )} \, dx=\text {Too large to display} \] Input:

int(1/((a + b/x)^(3/2)*(c + d/x)),x)
 

Output:

(atan((((d^5*(a*d - b*c)^3)^(1/2)*((a + b/x)^(1/2)*(18*a^6*b^9*c^10*d^3 - 
66*a^7*b^8*c^9*d^4 + 68*a^8*b^7*c^8*d^5 + 20*a^9*b^6*c^7*d^6 - 62*a^10*b^5 
*c^6*d^7 - 2*a^11*b^4*c^5*d^8 + 40*a^12*b^3*c^4*d^9 - 16*a^13*b^2*c^3*d^10 
) + ((d^5*(a*d - b*c)^3)^(1/2)*(64*a^9*b^8*c^11*d^3 - 12*a^8*b^9*c^12*d^2 
- 132*a^10*b^7*c^10*d^4 + 128*a^11*b^6*c^9*d^5 - 52*a^12*b^5*c^8*d^6 + 4*a 
^14*b^3*c^6*d^8 + ((d^5*(a*d - b*c)^3)^(1/2)*(a + b/x)^(1/2)*(8*a^10*b^8*c 
^13*d^2 - 56*a^11*b^7*c^12*d^3 + 160*a^12*b^6*c^11*d^4 - 240*a^13*b^5*c^10 
*d^5 + 200*a^14*b^4*c^9*d^6 - 88*a^15*b^3*c^8*d^7 + 16*a^16*b^2*c^7*d^8))/ 
(c^2*(a*d - b*c)^3)))/(c^2*(a*d - b*c)^3))*1i)/(c^2*(a*d - b*c)^3) + ((d^5 
*(a*d - b*c)^3)^(1/2)*((a + b/x)^(1/2)*(18*a^6*b^9*c^10*d^3 - 66*a^7*b^8*c 
^9*d^4 + 68*a^8*b^7*c^8*d^5 + 20*a^9*b^6*c^7*d^6 - 62*a^10*b^5*c^6*d^7 - 2 
*a^11*b^4*c^5*d^8 + 40*a^12*b^3*c^4*d^9 - 16*a^13*b^2*c^3*d^10) + ((d^5*(a 
*d - b*c)^3)^(1/2)*(12*a^8*b^9*c^12*d^2 - 64*a^9*b^8*c^11*d^3 + 132*a^10*b 
^7*c^10*d^4 - 128*a^11*b^6*c^9*d^5 + 52*a^12*b^5*c^8*d^6 - 4*a^14*b^3*c^6* 
d^8 + ((d^5*(a*d - b*c)^3)^(1/2)*(a + b/x)^(1/2)*(8*a^10*b^8*c^13*d^2 - 56 
*a^11*b^7*c^12*d^3 + 160*a^12*b^6*c^11*d^4 - 240*a^13*b^5*c^10*d^5 + 200*a 
^14*b^4*c^9*d^6 - 88*a^15*b^3*c^8*d^7 + 16*a^16*b^2*c^7*d^8))/(c^2*(a*d - 
b*c)^3)))/(c^2*(a*d - b*c)^3))*1i)/(c^2*(a*d - b*c)^3))/(36*a^6*b^8*c^7*d^ 
5 - 96*a^7*b^7*c^6*d^6 + 64*a^8*b^6*c^5*d^7 + 24*a^9*b^5*c^4*d^8 - 36*a^10 
*b^4*c^3*d^9 + 8*a^11*b^3*c^2*d^10 - ((d^5*(a*d - b*c)^3)^(1/2)*((a + b...
 

Reduce [B] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 507, normalized size of antiderivative = 3.45 \[ \int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2} \left (c+\frac {d}{x}\right )} \, dx=\frac {4 \sqrt {d}\, \sqrt {a x +b}\, \sqrt {a d -b c}\, \mathrm {log}\left (\sqrt {c}\, \sqrt {a x +b}-\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {x}\, \sqrt {c}\, \sqrt {a}\right ) a^{3} d^{2}+4 \sqrt {d}\, \sqrt {a x +b}\, \sqrt {a d -b c}\, \mathrm {log}\left (\sqrt {c}\, \sqrt {a x +b}+\sqrt {2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}-2 a d +b c}+\sqrt {x}\, \sqrt {c}\, \sqrt {a}\right ) a^{3} d^{2}-4 \sqrt {d}\, \sqrt {a x +b}\, \sqrt {a d -b c}\, \mathrm {log}\left (2 \sqrt {d}\, \sqrt {a}\, \sqrt {a d -b c}+2 \sqrt {x}\, \sqrt {a}\, \sqrt {a x +b}\, c +2 a c x +2 a d \right ) a^{3} d^{2}-8 \sqrt {a}\, \sqrt {a x +b}\, \mathrm {log}\left (\frac {\sqrt {a x +b}+\sqrt {x}\, \sqrt {a}}{\sqrt {b}}\right ) a^{3} d^{3}+4 \sqrt {a}\, \sqrt {a x +b}\, \mathrm {log}\left (\frac {\sqrt {a x +b}+\sqrt {x}\, \sqrt {a}}{\sqrt {b}}\right ) a^{2} b c \,d^{2}+16 \sqrt {a}\, \sqrt {a x +b}\, \mathrm {log}\left (\frac {\sqrt {a x +b}+\sqrt {x}\, \sqrt {a}}{\sqrt {b}}\right ) a \,b^{2} c^{2} d -12 \sqrt {a}\, \sqrt {a x +b}\, \mathrm {log}\left (\frac {\sqrt {a x +b}+\sqrt {x}\, \sqrt {a}}{\sqrt {b}}\right ) b^{3} c^{3}+\sqrt {a}\, \sqrt {a x +b}\, a^{2} b c \,d^{2}-10 \sqrt {a}\, \sqrt {a x +b}\, a \,b^{2} c^{2} d +9 \sqrt {a}\, \sqrt {a x +b}\, b^{3} c^{3}+4 \sqrt {x}\, a^{4} c \,d^{2} x -8 \sqrt {x}\, a^{3} b \,c^{2} d x +4 \sqrt {x}\, a^{3} b c \,d^{2}+4 \sqrt {x}\, a^{2} b^{2} c^{3} x -16 \sqrt {x}\, a^{2} b^{2} c^{2} d +12 \sqrt {x}\, a \,b^{3} c^{3}}{4 \sqrt {a x +b}\, a^{3} c^{2} \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right )} \] Input:

int(1/(a+b/x)^(3/2)/(c+d/x),x)
 

Output:

(4*sqrt(d)*sqrt(a*x + b)*sqrt(a*d - b*c)*log(sqrt(c)*sqrt(a*x + b) - sqrt( 
2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(x)*sqrt(c)*sqrt(a) 
)*a**3*d**2 + 4*sqrt(d)*sqrt(a*x + b)*sqrt(a*d - b*c)*log(sqrt(c)*sqrt(a*x 
 + b) + sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(x)*sq 
rt(c)*sqrt(a))*a**3*d**2 - 4*sqrt(d)*sqrt(a*x + b)*sqrt(a*d - b*c)*log(2*s 
qrt(d)*sqrt(a)*sqrt(a*d - b*c) + 2*sqrt(x)*sqrt(a)*sqrt(a*x + b)*c + 2*a*c 
*x + 2*a*d)*a**3*d**2 - 8*sqrt(a)*sqrt(a*x + b)*log((sqrt(a*x + b) + sqrt( 
x)*sqrt(a))/sqrt(b))*a**3*d**3 + 4*sqrt(a)*sqrt(a*x + b)*log((sqrt(a*x + b 
) + sqrt(x)*sqrt(a))/sqrt(b))*a**2*b*c*d**2 + 16*sqrt(a)*sqrt(a*x + b)*log 
((sqrt(a*x + b) + sqrt(x)*sqrt(a))/sqrt(b))*a*b**2*c**2*d - 12*sqrt(a)*sqr 
t(a*x + b)*log((sqrt(a*x + b) + sqrt(x)*sqrt(a))/sqrt(b))*b**3*c**3 + sqrt 
(a)*sqrt(a*x + b)*a**2*b*c*d**2 - 10*sqrt(a)*sqrt(a*x + b)*a*b**2*c**2*d + 
 9*sqrt(a)*sqrt(a*x + b)*b**3*c**3 + 4*sqrt(x)*a**4*c*d**2*x - 8*sqrt(x)*a 
**3*b*c**2*d*x + 4*sqrt(x)*a**3*b*c*d**2 + 4*sqrt(x)*a**2*b**2*c**3*x - 16 
*sqrt(x)*a**2*b**2*c**2*d + 12*sqrt(x)*a*b**3*c**3)/(4*sqrt(a*x + b)*a**3* 
c**2*(a**2*d**2 - 2*a*b*c*d + b**2*c**2))