\(\int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx\) [55]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 145 \[ \int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx=\frac {a x}{c}-\frac {(b c-a d) \arctan \left (\frac {\sqrt [3]{d}-2 \sqrt [3]{c} x}{\sqrt {3} \sqrt [3]{d}}\right )}{\sqrt {3} c^{4/3} d^{2/3}}+\frac {(b c-a d) \log \left (\sqrt [3]{d}+\sqrt [3]{c} x\right )}{3 c^{4/3} d^{2/3}}-\frac {(b c-a d) \log \left (d^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3} x^2\right )}{6 c^{4/3} d^{2/3}} \] Output:

a*x/c-1/3*(-a*d+b*c)*arctan(1/3*(d^(1/3)-2*c^(1/3)*x)*3^(1/2)/d^(1/3))*3^( 
1/2)/c^(4/3)/d^(2/3)+1/3*(-a*d+b*c)*ln(d^(1/3)+c^(1/3)*x)/c^(4/3)/d^(2/3)- 
1/6*(-a*d+b*c)*ln(d^(2/3)-c^(1/3)*d^(1/3)*x+c^(2/3)*x^2)/c^(4/3)/d^(2/3)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.89 \[ \int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx=\frac {6 a \sqrt [3]{c} d^{2/3} x-2 \sqrt {3} (b c-a d) \arctan \left (\frac {1-\frac {2 \sqrt [3]{c} x}{\sqrt [3]{d}}}{\sqrt {3}}\right )+2 (b c-a d) \log \left (\sqrt [3]{d}+\sqrt [3]{c} x\right )-(b c-a d) \log \left (d^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3} x^2\right )}{6 c^{4/3} d^{2/3}} \] Input:

Integrate[(a + b/x^3)/(c + d/x^3),x]
 

Output:

(6*a*c^(1/3)*d^(2/3)*x - 2*Sqrt[3]*(b*c - a*d)*ArcTan[(1 - (2*c^(1/3)*x)/d 
^(1/3))/Sqrt[3]] + 2*(b*c - a*d)*Log[d^(1/3) + c^(1/3)*x] - (b*c - a*d)*Lo 
g[d^(2/3) - c^(1/3)*d^(1/3)*x + c^(2/3)*x^2])/(6*c^(4/3)*d^(2/3))
 

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.90, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.588, Rules used = {898, 913, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx\)

\(\Big \downarrow \) 898

\(\displaystyle \int \frac {a x^3+b}{c x^3+d}dx\)

\(\Big \downarrow \) 913

\(\displaystyle \frac {(b c-a d) \int \frac {1}{c x^3+d}dx}{c}+\frac {a x}{c}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {(b c-a d) \left (\frac {\int \frac {2 \sqrt [3]{d}-\sqrt [3]{c} x}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx}{3 d^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{c} x+\sqrt [3]{d}}dx}{3 d^{2/3}}\right )}{c}+\frac {a x}{c}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {(b c-a d) \left (\frac {\int \frac {2 \sqrt [3]{d}-\sqrt [3]{c} x}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx}{3 d^{2/3}}+\frac {\log \left (\sqrt [3]{c} x+\sqrt [3]{d}\right )}{3 \sqrt [3]{c} d^{2/3}}\right )}{c}+\frac {a x}{c}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {3}{2} \sqrt [3]{d} \int \frac {1}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{c} \left (\sqrt [3]{d}-2 \sqrt [3]{c} x\right )}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx}{2 \sqrt [3]{c}}}{3 d^{2/3}}+\frac {\log \left (\sqrt [3]{c} x+\sqrt [3]{d}\right )}{3 \sqrt [3]{c} d^{2/3}}\right )}{c}+\frac {a x}{c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {3}{2} \sqrt [3]{d} \int \frac {1}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx+\frac {\int \frac {\sqrt [3]{c} \left (\sqrt [3]{d}-2 \sqrt [3]{c} x\right )}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx}{2 \sqrt [3]{c}}}{3 d^{2/3}}+\frac {\log \left (\sqrt [3]{c} x+\sqrt [3]{d}\right )}{3 \sqrt [3]{c} d^{2/3}}\right )}{c}+\frac {a x}{c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {3}{2} \sqrt [3]{d} \int \frac {1}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{d}-2 \sqrt [3]{c} x}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx}{3 d^{2/3}}+\frac {\log \left (\sqrt [3]{c} x+\sqrt [3]{d}\right )}{3 \sqrt [3]{c} d^{2/3}}\right )}{c}+\frac {a x}{c}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{d}-2 \sqrt [3]{c} x}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{c} x}{\sqrt [3]{d}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{c} x}{\sqrt [3]{d}}\right )}{\sqrt [3]{c}}}{3 d^{2/3}}+\frac {\log \left (\sqrt [3]{c} x+\sqrt [3]{d}\right )}{3 \sqrt [3]{c} d^{2/3}}\right )}{c}+\frac {a x}{c}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {(b c-a d) \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{d}-2 \sqrt [3]{c} x}{c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{c} x}{\sqrt [3]{d}}}{\sqrt {3}}\right )}{\sqrt [3]{c}}}{3 d^{2/3}}+\frac {\log \left (\sqrt [3]{c} x+\sqrt [3]{d}\right )}{3 \sqrt [3]{c} d^{2/3}}\right )}{c}+\frac {a x}{c}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {(b c-a d) \left (\frac {-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{c} x}{\sqrt [3]{d}}}{\sqrt {3}}\right )}{\sqrt [3]{c}}-\frac {\log \left (c^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3}\right )}{2 \sqrt [3]{c}}}{3 d^{2/3}}+\frac {\log \left (\sqrt [3]{c} x+\sqrt [3]{d}\right )}{3 \sqrt [3]{c} d^{2/3}}\right )}{c}+\frac {a x}{c}\)

Input:

Int[(a + b/x^3)/(c + d/x^3),x]
 

Output:

(a*x)/c + ((b*c - a*d)*(Log[d^(1/3) + c^(1/3)*x]/(3*c^(1/3)*d^(2/3)) + (-( 
(Sqrt[3]*ArcTan[(1 - (2*c^(1/3)*x)/d^(1/3))/Sqrt[3]])/c^(1/3)) - Log[d^(2/ 
3) - c^(1/3)*d^(1/3)*x + c^(2/3)*x^2]/(2*c^(1/3)))/(3*d^(2/3))))/c
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 898
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol 
] :> Int[x^(n*(p + q))*(b + a/x^n)^p*(d + c/x^n)^q, x] /; FreeQ[{a, b, c, d 
, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[p, q] && NegQ[n]
 

rule 913
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Si 
mp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(p + 1) + 1))), x] - Simp[(a*d - b*c*(n*( 
p + 1) + 1))/(b*(n*(p + 1) + 1))   Int[(a + b*x^n)^p, x], x] /; FreeQ[{a, b 
, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.20 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.29

method result size
risch \(\frac {a x}{c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{3}+d \right )}{\sum }\frac {\left (-a d +b c \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{2}}}{3 c^{2}}\) \(42\)
default \(\frac {a x}{c}+\frac {\left (\frac {\ln \left (x +\left (\frac {d}{c}\right )^{\frac {1}{3}}\right )}{3 c \left (\frac {d}{c}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {d}{c}\right )^{\frac {1}{3}} x +\left (\frac {d}{c}\right )^{\frac {2}{3}}\right )}{6 c \left (\frac {d}{c}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {d}{c}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 c \left (\frac {d}{c}\right )^{\frac {2}{3}}}\right ) \left (-a d +b c \right )}{c}\) \(110\)

Input:

int((a+b/x^3)/(c+d/x^3),x,method=_RETURNVERBOSE)
 

Output:

a*x/c+1/3/c^2*sum((-a*d+b*c)/_R^2*ln(x-_R),_R=RootOf(_Z^3*c+d))
 

Fricas [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 390, normalized size of antiderivative = 2.69 \[ \int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx=\left [\frac {6 \, a c d^{2} x - 3 \, \sqrt {\frac {1}{3}} {\left (b c^{2} d - a c d^{2}\right )} \sqrt {\frac {\left (-c d^{2}\right )^{\frac {1}{3}}}{c}} \log \left (\frac {2 \, c d x^{3} + 3 \, \left (-c d^{2}\right )^{\frac {1}{3}} d x - d^{2} - 3 \, \sqrt {\frac {1}{3}} {\left (2 \, c d x^{2} + \left (-c d^{2}\right )^{\frac {2}{3}} x + \left (-c d^{2}\right )^{\frac {1}{3}} d\right )} \sqrt {\frac {\left (-c d^{2}\right )^{\frac {1}{3}}}{c}}}{c x^{3} + d}\right ) - \left (-c d^{2}\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (c d x^{2} - \left (-c d^{2}\right )^{\frac {2}{3}} x - \left (-c d^{2}\right )^{\frac {1}{3}} d\right ) + 2 \, \left (-c d^{2}\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (c d x + \left (-c d^{2}\right )^{\frac {2}{3}}\right )}{6 \, c^{2} d^{2}}, \frac {6 \, a c d^{2} x + 6 \, \sqrt {\frac {1}{3}} {\left (b c^{2} d - a c d^{2}\right )} \sqrt {-\frac {\left (-c d^{2}\right )^{\frac {1}{3}}}{c}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (-c d^{2}\right )^{\frac {2}{3}} x + \left (-c d^{2}\right )^{\frac {1}{3}} d\right )} \sqrt {-\frac {\left (-c d^{2}\right )^{\frac {1}{3}}}{c}}}{d^{2}}\right ) - \left (-c d^{2}\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (c d x^{2} - \left (-c d^{2}\right )^{\frac {2}{3}} x - \left (-c d^{2}\right )^{\frac {1}{3}} d\right ) + 2 \, \left (-c d^{2}\right )^{\frac {2}{3}} {\left (b c - a d\right )} \log \left (c d x + \left (-c d^{2}\right )^{\frac {2}{3}}\right )}{6 \, c^{2} d^{2}}\right ] \] Input:

integrate((a+b/x^3)/(c+d/x^3),x, algorithm="fricas")
 

Output:

[1/6*(6*a*c*d^2*x - 3*sqrt(1/3)*(b*c^2*d - a*c*d^2)*sqrt((-c*d^2)^(1/3)/c) 
*log((2*c*d*x^3 + 3*(-c*d^2)^(1/3)*d*x - d^2 - 3*sqrt(1/3)*(2*c*d*x^2 + (- 
c*d^2)^(2/3)*x + (-c*d^2)^(1/3)*d)*sqrt((-c*d^2)^(1/3)/c))/(c*x^3 + d)) - 
(-c*d^2)^(2/3)*(b*c - a*d)*log(c*d*x^2 - (-c*d^2)^(2/3)*x - (-c*d^2)^(1/3) 
*d) + 2*(-c*d^2)^(2/3)*(b*c - a*d)*log(c*d*x + (-c*d^2)^(2/3)))/(c^2*d^2), 
 1/6*(6*a*c*d^2*x + 6*sqrt(1/3)*(b*c^2*d - a*c*d^2)*sqrt(-(-c*d^2)^(1/3)/c 
)*arctan(sqrt(1/3)*(2*(-c*d^2)^(2/3)*x + (-c*d^2)^(1/3)*d)*sqrt(-(-c*d^2)^ 
(1/3)/c)/d^2) - (-c*d^2)^(2/3)*(b*c - a*d)*log(c*d*x^2 - (-c*d^2)^(2/3)*x 
- (-c*d^2)^(1/3)*d) + 2*(-c*d^2)^(2/3)*(b*c - a*d)*log(c*d*x + (-c*d^2)^(2 
/3)))/(c^2*d^2)]
 

Sympy [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.49 \[ \int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx=\frac {a x}{c} + \operatorname {RootSum} {\left (27 t^{3} c^{4} d^{2} + a^{3} d^{3} - 3 a^{2} b c d^{2} + 3 a b^{2} c^{2} d - b^{3} c^{3}, \left ( t \mapsto t \log {\left (- \frac {3 t c d}{a d - b c} + x \right )} \right )\right )} \] Input:

integrate((a+b/x**3)/(c+d/x**3),x)
 

Output:

a*x/c + RootSum(27*_t**3*c**4*d**2 + a**3*d**3 - 3*a**2*b*c*d**2 + 3*a*b** 
2*c**2*d - b**3*c**3, Lambda(_t, _t*log(-3*_t*c*d/(a*d - b*c) + x)))
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.88 \[ \int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx=\frac {a x}{c} + \frac {\sqrt {3} {\left (b c - a d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {d}{c}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {d}{c}\right )^{\frac {1}{3}}}\right )}{3 \, c^{2} \left (\frac {d}{c}\right )^{\frac {2}{3}}} - \frac {{\left (b c - a d\right )} \log \left (x^{2} - x \left (\frac {d}{c}\right )^{\frac {1}{3}} + \left (\frac {d}{c}\right )^{\frac {2}{3}}\right )}{6 \, c^{2} \left (\frac {d}{c}\right )^{\frac {2}{3}}} + \frac {{\left (b c - a d\right )} \log \left (x + \left (\frac {d}{c}\right )^{\frac {1}{3}}\right )}{3 \, c^{2} \left (\frac {d}{c}\right )^{\frac {2}{3}}} \] Input:

integrate((a+b/x^3)/(c+d/x^3),x, algorithm="maxima")
 

Output:

a*x/c + 1/3*sqrt(3)*(b*c - a*d)*arctan(1/3*sqrt(3)*(2*x - (d/c)^(1/3))/(d/ 
c)^(1/3))/(c^2*(d/c)^(2/3)) - 1/6*(b*c - a*d)*log(x^2 - x*(d/c)^(1/3) + (d 
/c)^(2/3))/(c^2*(d/c)^(2/3)) + 1/3*(b*c - a*d)*log(x + (d/c)^(1/3))/(c^2*( 
d/c)^(2/3))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.92 \[ \int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx=-\frac {\sqrt {3} {\left (b c - a d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {d}{c}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {d}{c}\right )^{\frac {1}{3}}}\right )}{3 \, \left (-c^{2} d\right )^{\frac {2}{3}}} - \frac {{\left (b c - a d\right )} \log \left (x^{2} + x \left (-\frac {d}{c}\right )^{\frac {1}{3}} + \left (-\frac {d}{c}\right )^{\frac {2}{3}}\right )}{6 \, \left (-c^{2} d\right )^{\frac {2}{3}}} + \frac {a x}{c} - \frac {{\left (b c - a d\right )} \left (-\frac {d}{c}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {d}{c}\right )^{\frac {1}{3}} \right |}\right )}{3 \, c d} \] Input:

integrate((a+b/x^3)/(c+d/x^3),x, algorithm="giac")
 

Output:

-1/3*sqrt(3)*(b*c - a*d)*arctan(1/3*sqrt(3)*(2*x + (-d/c)^(1/3))/(-d/c)^(1 
/3))/(-c^2*d)^(2/3) - 1/6*(b*c - a*d)*log(x^2 + x*(-d/c)^(1/3) + (-d/c)^(2 
/3))/(-c^2*d)^(2/3) + a*x/c - 1/3*(b*c - a*d)*(-d/c)^(1/3)*log(abs(x - (-d 
/c)^(1/3)))/(c*d)
 

Mupad [B] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.85 \[ \int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx=\frac {a\,x}{c}-\frac {\ln \left (c^{1/3}\,x+d^{1/3}\right )\,\left (a\,d-b\,c\right )}{3\,c^{4/3}\,d^{2/3}}+\frac {\ln \left (d^{1/3}-2\,c^{1/3}\,x+\sqrt {3}\,d^{1/3}\,1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (a\,d-b\,c\right )}{3\,c^{4/3}\,d^{2/3}}-\frac {\ln \left (2\,c^{1/3}\,x-d^{1/3}+\sqrt {3}\,d^{1/3}\,1{}\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (a\,d-b\,c\right )}{3\,c^{4/3}\,d^{2/3}} \] Input:

int((a + b/x^3)/(c + d/x^3),x)
 

Output:

(a*x)/c - (log(c^(1/3)*x + d^(1/3))*(a*d - b*c))/(3*c^(4/3)*d^(2/3)) + (lo 
g(3^(1/2)*d^(1/3)*1i - 2*c^(1/3)*x + d^(1/3))*((3^(1/2)*1i)/2 + 1/2)*(a*d 
- b*c))/(3*c^(4/3)*d^(2/3)) - (log(3^(1/2)*d^(1/3)*1i + 2*c^(1/3)*x - d^(1 
/3))*((3^(1/2)*1i)/2 - 1/2)*(a*d - b*c))/(3*c^(4/3)*d^(2/3))
 

Reduce [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.12 \[ \int \frac {a+\frac {b}{x^3}}{c+\frac {d}{x^3}} \, dx=\frac {-2 d^{\frac {4}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {2 c^{\frac {1}{3}} x -d^{\frac {1}{3}}}{d^{\frac {1}{3}} \sqrt {3}}\right ) a +2 d^{\frac {1}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {2 c^{\frac {1}{3}} x -d^{\frac {1}{3}}}{d^{\frac {1}{3}} \sqrt {3}}\right ) b c +6 c^{\frac {1}{3}} a d x +d^{\frac {4}{3}} \mathrm {log}\left (c^{\frac {2}{3}} x^{2}-d^{\frac {1}{3}} c^{\frac {1}{3}} x +d^{\frac {2}{3}}\right ) a -d^{\frac {1}{3}} \mathrm {log}\left (c^{\frac {2}{3}} x^{2}-d^{\frac {1}{3}} c^{\frac {1}{3}} x +d^{\frac {2}{3}}\right ) b c -2 d^{\frac {4}{3}} \mathrm {log}\left (c^{\frac {1}{3}} x +d^{\frac {1}{3}}\right ) a +2 d^{\frac {1}{3}} \mathrm {log}\left (c^{\frac {1}{3}} x +d^{\frac {1}{3}}\right ) b c}{6 c^{\frac {4}{3}} d} \] Input:

int((a+b/x^3)/(c+d/x^3),x)
 

Output:

( - 2*d**(1/3)*sqrt(3)*atan((2*c**(1/3)*x - d**(1/3))/(d**(1/3)*sqrt(3)))* 
a*d + 2*d**(1/3)*sqrt(3)*atan((2*c**(1/3)*x - d**(1/3))/(d**(1/3)*sqrt(3)) 
)*b*c + 6*c**(1/3)*a*d*x + d**(1/3)*log(c**(2/3)*x**2 - d**(1/3)*c**(1/3)* 
x + d**(2/3))*a*d - d**(1/3)*log(c**(2/3)*x**2 - d**(1/3)*c**(1/3)*x + d** 
(2/3))*b*c - 2*d**(1/3)*log(c**(1/3)*x + d**(1/3))*a*d + 2*d**(1/3)*log(c* 
*(1/3)*x + d**(1/3))*b*c)/(6*c**(1/3)*c*d)