\(\int \frac {x (A+B x^3)}{(a+b x^3)^3} \, dx\) [104]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 201 \[ \int \frac {x \left (A+B x^3\right )}{\left (a+b x^3\right )^3} \, dx=\frac {(A b-a B) x^2}{6 a b \left (a+b x^3\right )^2}+\frac {(2 A b+a B) x^2}{9 a^2 b \left (a+b x^3\right )}-\frac {(2 A b+a B) \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{9 \sqrt {3} a^{7/3} b^{5/3}}-\frac {(2 A b+a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{27 a^{7/3} b^{5/3}}+\frac {(2 A b+a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{54 a^{7/3} b^{5/3}} \] Output:

1/6*(A*b-B*a)*x^2/a/b/(b*x^3+a)^2+1/9*(2*A*b+B*a)*x^2/a^2/b/(b*x^3+a)-1/27 
*(2*A*b+B*a)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)*3^(1/2)/a^(1/3))*3^(1/2)/a^( 
7/3)/b^(5/3)-1/27*(2*A*b+B*a)*ln(a^(1/3)+b^(1/3)*x)/a^(7/3)/b^(5/3)+1/54*( 
2*A*b+B*a)*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^(7/3)/b^(5/3)
 

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.89 \[ \int \frac {x \left (A+B x^3\right )}{\left (a+b x^3\right )^3} \, dx=\frac {-\frac {9 a^{4/3} b^{2/3} (-A b+a B) x^2}{\left (a+b x^3\right )^2}+\frac {6 \sqrt [3]{a} b^{2/3} (2 A b+a B) x^2}{a+b x^3}-2 \sqrt {3} (2 A b+a B) \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )-2 (2 A b+a B) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )+(2 A b+a B) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{54 a^{7/3} b^{5/3}} \] Input:

Integrate[(x*(A + B*x^3))/(a + b*x^3)^3,x]
 

Output:

((-9*a^(4/3)*b^(2/3)*(-(A*b) + a*B)*x^2)/(a + b*x^3)^2 + (6*a^(1/3)*b^(2/3 
)*(2*A*b + a*B)*x^2)/(a + b*x^3) - 2*Sqrt[3]*(2*A*b + a*B)*ArcTan[(1 - (2* 
b^(1/3)*x)/a^(1/3))/Sqrt[3]] - 2*(2*A*b + a*B)*Log[a^(1/3) + b^(1/3)*x] + 
(2*A*b + a*B)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(54*a^(7/3)* 
b^(5/3))
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.96, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.556, Rules used = {957, 819, 821, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \left (A+B x^3\right )}{\left (a+b x^3\right )^3} \, dx\)

\(\Big \downarrow \) 957

\(\displaystyle \frac {(a B+2 A b) \int \frac {x}{\left (b x^3+a\right )^2}dx}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {(a B+2 A b) \left (\frac {\int \frac {x}{b x^3+a}dx}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}\right )}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 821

\(\displaystyle \frac {(a B+2 A b) \left (\frac {\frac {\int \frac {\sqrt [3]{b} x+\sqrt [3]{a}}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}\right )}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {(a B+2 A b) \left (\frac {\frac {\int \frac {\sqrt [3]{b} x+\sqrt [3]{a}}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}\right )}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {(a B+2 A b) \left (\frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}\right )}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {(a B+2 A b) \left (\frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}\right )}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(a B+2 A b) \left (\frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}\right )}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {(a B+2 A b) \left (\frac {\frac {\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}\right )}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {(a B+2 A b) \left (\frac {\frac {-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}\right )}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {(a B+2 A b) \left (\frac {\frac {\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 \sqrt [3]{a} b^{2/3}}}{3 a}+\frac {x^2}{3 a \left (a+b x^3\right )}\right )}{3 a b}+\frac {x^2 (A b-a B)}{6 a b \left (a+b x^3\right )^2}\)

Input:

Int[(x*(A + B*x^3))/(a + b*x^3)^3,x]
 

Output:

((A*b - a*B)*x^2)/(6*a*b*(a + b*x^3)^2) + ((2*A*b + a*B)*(x^2/(3*a*(a + b* 
x^3)) + (-1/3*Log[a^(1/3) + b^(1/3)*x]/(a^(1/3)*b^(2/3)) + (-((Sqrt[3]*Arc 
Tan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/b^(1/3)) + Log[a^(2/3) - a^(1/3) 
*b^(1/3)*x + b^(2/3)*x^2]/(2*b^(1/3)))/(3*a^(1/3)*b^(1/3)))/(3*a)))/(3*a*b 
)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 821
Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Simp[-(3*Rt[a, 3]*Rt[b, 3])^(- 
1)   Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]*Rt[b, 3]) 
 Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2 
*x^2), x], x] /; FreeQ[{a, b}, x]
 

rule 957
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[(-(b*c - a*d))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a 
*b*e*n*(p + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b*n* 
(p + 1))   Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, 
 m, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && N 
eQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] && LeQ[-1 
, m, (-n)*(p + 1)]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.83 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.43

method result size
risch \(\frac {\frac {\left (2 A b +B a \right ) x^{5}}{9 a^{2}}+\frac {\left (7 A b -B a \right ) x^{2}}{18 a b}}{\left (b \,x^{3}+a \right )^{2}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (2 A b +B a \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}}}{27 a^{2} b^{2}}\) \(86\)
default \(\frac {\frac {\left (2 A b +B a \right ) x^{5}}{9 a^{2}}+\frac {\left (7 A b -B a \right ) x^{2}}{18 a b}}{\left (b \,x^{3}+a \right )^{2}}+\frac {\left (2 A b +B a \right ) \left (-\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{9 a^{2} b}\) \(155\)

Input:

int(x*(B*x^3+A)/(b*x^3+a)^3,x,method=_RETURNVERBOSE)
 

Output:

(1/9*(2*A*b+B*a)/a^2*x^5+1/18*(7*A*b-B*a)/a/b*x^2)/(b*x^3+a)^2+1/27/a^2/b^ 
2*sum((2*A*b+B*a)/_R*ln(x-_R),_R=RootOf(_Z^3*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 353 vs. \(2 (160) = 320\).

Time = 0.13 (sec) , antiderivative size = 752, normalized size of antiderivative = 3.74 \[ \int \frac {x \left (A+B x^3\right )}{\left (a+b x^3\right )^3} \, dx =\text {Too large to display} \] Input:

integrate(x*(B*x^3+A)/(b*x^3+a)^3,x, algorithm="fricas")
 

Output:

[1/54*(6*(B*a^2*b^3 + 2*A*a*b^4)*x^5 - 3*(B*a^3*b^2 - 7*A*a^2*b^3)*x^2 + 3 
*sqrt(1/3)*((B*a^2*b^3 + 2*A*a*b^4)*x^6 + B*a^4*b + 2*A*a^3*b^2 + 2*(B*a^3 
*b^2 + 2*A*a^2*b^3)*x^3)*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*x^3 - a*b + 3*s 
qrt(1/3)*(a*b*x + 2*(-a*b^2)^(2/3)*x^2 + (-a*b^2)^(1/3)*a)*sqrt((-a*b^2)^( 
1/3)/a) - 3*(-a*b^2)^(2/3)*x)/(b*x^3 + a)) + ((B*a*b^2 + 2*A*b^3)*x^6 + B* 
a^3 + 2*A*a^2*b + 2*(B*a^2*b + 2*A*a*b^2)*x^3)*(-a*b^2)^(2/3)*log(b^2*x^2 
+ (-a*b^2)^(1/3)*b*x + (-a*b^2)^(2/3)) - 2*((B*a*b^2 + 2*A*b^3)*x^6 + B*a^ 
3 + 2*A*a^2*b + 2*(B*a^2*b + 2*A*a*b^2)*x^3)*(-a*b^2)^(2/3)*log(b*x - (-a* 
b^2)^(1/3)))/(a^3*b^5*x^6 + 2*a^4*b^4*x^3 + a^5*b^3), 1/54*(6*(B*a^2*b^3 + 
 2*A*a*b^4)*x^5 - 3*(B*a^3*b^2 - 7*A*a^2*b^3)*x^2 + 6*sqrt(1/3)*((B*a^2*b^ 
3 + 2*A*a*b^4)*x^6 + B*a^4*b + 2*A*a^3*b^2 + 2*(B*a^3*b^2 + 2*A*a^2*b^3)*x 
^3)*sqrt(-(-a*b^2)^(1/3)/a)*arctan(sqrt(1/3)*(2*b*x + (-a*b^2)^(1/3))*sqrt 
(-(-a*b^2)^(1/3)/a)/b) + ((B*a*b^2 + 2*A*b^3)*x^6 + B*a^3 + 2*A*a^2*b + 2* 
(B*a^2*b + 2*A*a*b^2)*x^3)*(-a*b^2)^(2/3)*log(b^2*x^2 + (-a*b^2)^(1/3)*b*x 
 + (-a*b^2)^(2/3)) - 2*((B*a*b^2 + 2*A*b^3)*x^6 + B*a^3 + 2*A*a^2*b + 2*(B 
*a^2*b + 2*A*a*b^2)*x^3)*(-a*b^2)^(2/3)*log(b*x - (-a*b^2)^(1/3)))/(a^3*b^ 
5*x^6 + 2*a^4*b^4*x^3 + a^5*b^3)]
 

Sympy [A] (verification not implemented)

Time = 0.57 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.76 \[ \int \frac {x \left (A+B x^3\right )}{\left (a+b x^3\right )^3} \, dx=\frac {x^{5} \cdot \left (4 A b^{2} + 2 B a b\right ) + x^{2} \cdot \left (7 A a b - B a^{2}\right )}{18 a^{4} b + 36 a^{3} b^{2} x^{3} + 18 a^{2} b^{3} x^{6}} + \operatorname {RootSum} {\left (19683 t^{3} a^{7} b^{5} + 8 A^{3} b^{3} + 12 A^{2} B a b^{2} + 6 A B^{2} a^{2} b + B^{3} a^{3}, \left ( t \mapsto t \log {\left (\frac {729 t^{2} a^{5} b^{3}}{4 A^{2} b^{2} + 4 A B a b + B^{2} a^{2}} + x \right )} \right )\right )} \] Input:

integrate(x*(B*x**3+A)/(b*x**3+a)**3,x)
                                                                                    
                                                                                    
 

Output:

(x**5*(4*A*b**2 + 2*B*a*b) + x**2*(7*A*a*b - B*a**2))/(18*a**4*b + 36*a**3 
*b**2*x**3 + 18*a**2*b**3*x**6) + RootSum(19683*_t**3*a**7*b**5 + 8*A**3*b 
**3 + 12*A**2*B*a*b**2 + 6*A*B**2*a**2*b + B**3*a**3, Lambda(_t, _t*log(72 
9*_t**2*a**5*b**3/(4*A**2*b**2 + 4*A*B*a*b + B**2*a**2) + x)))
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.97 \[ \int \frac {x \left (A+B x^3\right )}{\left (a+b x^3\right )^3} \, dx=\frac {2 \, {\left (B a b + 2 \, A b^{2}\right )} x^{5} - {\left (B a^{2} - 7 \, A a b\right )} x^{2}}{18 \, {\left (a^{2} b^{3} x^{6} + 2 \, a^{3} b^{2} x^{3} + a^{4} b\right )}} + \frac {\sqrt {3} {\left (B a + 2 \, A b\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{27 \, a^{2} b^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {{\left (B a + 2 \, A b\right )} \log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{54 \, a^{2} b^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {{\left (B a + 2 \, A b\right )} \log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{27 \, a^{2} b^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} \] Input:

integrate(x*(B*x^3+A)/(b*x^3+a)^3,x, algorithm="maxima")
 

Output:

1/18*(2*(B*a*b + 2*A*b^2)*x^5 - (B*a^2 - 7*A*a*b)*x^2)/(a^2*b^3*x^6 + 2*a^ 
3*b^2*x^3 + a^4*b) + 1/27*sqrt(3)*(B*a + 2*A*b)*arctan(1/3*sqrt(3)*(2*x - 
(a/b)^(1/3))/(a/b)^(1/3))/(a^2*b^2*(a/b)^(1/3)) + 1/54*(B*a + 2*A*b)*log(x 
^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(a^2*b^2*(a/b)^(1/3)) - 1/27*(B*a + 2*A* 
b)*log(x + (a/b)^(1/3))/(a^2*b^2*(a/b)^(1/3))
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.03 \[ \int \frac {x \left (A+B x^3\right )}{\left (a+b x^3\right )^3} \, dx=\frac {\sqrt {3} {\left (B a + 2 \, A b\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{27 \, \left (-a b^{2}\right )^{\frac {1}{3}} a^{2} b} - \frac {{\left (B a + 2 \, A b\right )} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{54 \, \left (-a b^{2}\right )^{\frac {1}{3}} a^{2} b} - \frac {{\left (B a \left (-\frac {a}{b}\right )^{\frac {1}{3}} + 2 \, A b \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )} \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{27 \, a^{3} b} + \frac {2 \, B a b x^{5} + 4 \, A b^{2} x^{5} - B a^{2} x^{2} + 7 \, A a b x^{2}}{18 \, {\left (b x^{3} + a\right )}^{2} a^{2} b} \] Input:

integrate(x*(B*x^3+A)/(b*x^3+a)^3,x, algorithm="giac")
 

Output:

1/27*sqrt(3)*(B*a + 2*A*b)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^ 
(1/3))/((-a*b^2)^(1/3)*a^2*b) - 1/54*(B*a + 2*A*b)*log(x^2 + x*(-a/b)^(1/3 
) + (-a/b)^(2/3))/((-a*b^2)^(1/3)*a^2*b) - 1/27*(B*a*(-a/b)^(1/3) + 2*A*b* 
(-a/b)^(1/3))*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/(a^3*b) + 1/18*(2*B* 
a*b*x^5 + 4*A*b^2*x^5 - B*a^2*x^2 + 7*A*a*b*x^2)/((b*x^3 + a)^2*a^2*b)
 

Mupad [B] (verification not implemented)

Time = 0.94 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.87 \[ \int \frac {x \left (A+B x^3\right )}{\left (a+b x^3\right )^3} \, dx=\frac {\frac {x^5\,\left (2\,A\,b+B\,a\right )}{9\,a^2}+\frac {x^2\,\left (7\,A\,b-B\,a\right )}{18\,a\,b}}{a^2+2\,a\,b\,x^3+b^2\,x^6}-\frac {\ln \left (b^{1/3}\,x+a^{1/3}\right )\,\left (2\,A\,b+B\,a\right )}{27\,a^{7/3}\,b^{5/3}}-\frac {\ln \left (a^{1/3}-2\,b^{1/3}\,x+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (2\,A\,b+B\,a\right )}{27\,a^{7/3}\,b^{5/3}}+\frac {\ln \left (2\,b^{1/3}\,x-a^{1/3}+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (2\,A\,b+B\,a\right )}{27\,a^{7/3}\,b^{5/3}} \] Input:

int((x*(A + B*x^3))/(a + b*x^3)^3,x)
 

Output:

((x^5*(2*A*b + B*a))/(9*a^2) + (x^2*(7*A*b - B*a))/(18*a*b))/(a^2 + b^2*x^ 
6 + 2*a*b*x^3) - (log(b^(1/3)*x + a^(1/3))*(2*A*b + B*a))/(27*a^(7/3)*b^(5 
/3)) - (log(3^(1/2)*a^(1/3)*1i - 2*b^(1/3)*x + a^(1/3))*((3^(1/2)*1i)/2 - 
1/2)*(2*A*b + B*a))/(27*a^(7/3)*b^(5/3)) + (log(3^(1/2)*a^(1/3)*1i + 2*b^( 
1/3)*x - a^(1/3))*((3^(1/2)*1i)/2 + 1/2)*(2*A*b + B*a))/(27*a^(7/3)*b^(5/3 
))
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.79 \[ \int \frac {x \left (A+B x^3\right )}{\left (a+b x^3\right )^3} \, dx=\frac {-2 \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) a -2 \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) b \,x^{3}+6 b^{\frac {2}{3}} a^{\frac {1}{3}} x^{2}+\mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) a +\mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) b \,x^{3}-2 \,\mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) a -2 \,\mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) b \,x^{3}}{18 b^{\frac {2}{3}} a^{\frac {4}{3}} \left (b \,x^{3}+a \right )} \] Input:

int(x*(B*x^3+A)/(b*x^3+a)^3,x)
 

Output:

( - 2*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt(3)))*a - 2*sqr 
t(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt(3)))*b*x**3 + 6*b**(2/3 
)*a**(1/3)*x**2 + log(a**(2/3) - b**(1/3)*a**(1/3)*x + b**(2/3)*x**2)*a + 
log(a**(2/3) - b**(1/3)*a**(1/3)*x + b**(2/3)*x**2)*b*x**3 - 2*log(a**(1/3 
) + b**(1/3)*x)*a - 2*log(a**(1/3) + b**(1/3)*x)*b*x**3)/(18*b**(2/3)*a**( 
1/3)*a*(a + b*x**3))