\(\int \frac {A+B x^3}{\sqrt {x} (a+b x^3)} \, dx\) [137]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 204 \[ \int \frac {A+B x^3}{\sqrt {x} \left (a+b x^3\right )} \, dx=\frac {2 B \sqrt {x}}{b}-\frac {(A b-a B) \arctan \left (\sqrt {3}-\frac {2 \sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} b^{7/6}}+\frac {(A b-a B) \arctan \left (\sqrt {3}+\frac {2 \sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} b^{7/6}}+\frac {2 (A b-a B) \arctan \left (\frac {\sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} b^{7/6}}+\frac {(A b-a B) \text {arctanh}\left (\frac {\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}}{\sqrt [3]{a}+\sqrt [3]{b} x}\right )}{\sqrt {3} a^{5/6} b^{7/6}} \] Output:

2*B*x^(1/2)/b+1/3*(A*b-B*a)*arctan(-3^(1/2)+2*b^(1/6)*x^(1/2)/a^(1/6))/a^( 
5/6)/b^(7/6)+1/3*(A*b-B*a)*arctan(3^(1/2)+2*b^(1/6)*x^(1/2)/a^(1/6))/a^(5/ 
6)/b^(7/6)+2/3*(A*b-B*a)*arctan(b^(1/6)*x^(1/2)/a^(1/6))/a^(5/6)/b^(7/6)+1 
/3*(A*b-B*a)*arctanh(3^(1/2)*a^(1/6)*b^(1/6)*x^(1/2)/(a^(1/3)+b^(1/3)*x))* 
3^(1/2)/a^(5/6)/b^(7/6)
 

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.75 \[ \int \frac {A+B x^3}{\sqrt {x} \left (a+b x^3\right )} \, dx=\frac {6 a^{5/6} \sqrt [6]{b} B \sqrt {x}+2 (A b-a B) \arctan \left (\frac {\sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )-(A b-a B) \arctan \left (\frac {\sqrt [3]{a}-\sqrt [3]{b} x}{\sqrt [6]{a} \sqrt [6]{b} \sqrt {x}}\right )+\sqrt {3} (A b-a B) \text {arctanh}\left (\frac {\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}}{\sqrt [3]{a}+\sqrt [3]{b} x}\right )}{3 a^{5/6} b^{7/6}} \] Input:

Integrate[(A + B*x^3)/(Sqrt[x]*(a + b*x^3)),x]
 

Output:

(6*a^(5/6)*b^(1/6)*B*Sqrt[x] + 2*(A*b - a*B)*ArcTan[(b^(1/6)*Sqrt[x])/a^(1 
/6)] - (A*b - a*B)*ArcTan[(a^(1/3) - b^(1/3)*x)/(a^(1/6)*b^(1/6)*Sqrt[x])] 
 + Sqrt[3]*(A*b - a*B)*ArcTanh[(Sqrt[3]*a^(1/6)*b^(1/6)*Sqrt[x])/(a^(1/3) 
+ b^(1/3)*x)])/(3*a^(5/6)*b^(7/6))
 

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.23, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {959, 851, 753, 27, 218, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x^3}{\sqrt {x} \left (a+b x^3\right )} \, dx\)

\(\Big \downarrow \) 959

\(\displaystyle \frac {(A b-a B) \int \frac {1}{\sqrt {x} \left (b x^3+a\right )}dx}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 851

\(\displaystyle \frac {2 (A b-a B) \int \frac {1}{b x^3+a}d\sqrt {x}}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 753

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}d\sqrt {x}}{3 a^{2/3}}+\frac {\int \frac {2 \sqrt [6]{a}-\sqrt {3} \sqrt [6]{b} \sqrt {x}}{2 \left (\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}\right )}d\sqrt {x}}{3 a^{5/6}}+\frac {\int \frac {\sqrt {3} \sqrt [6]{b} \sqrt {x}+2 \sqrt [6]{a}}{2 \left (\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}\right )}d\sqrt {x}}{3 a^{5/6}}\right )}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}d\sqrt {x}}{3 a^{2/3}}+\frac {\int \frac {2 \sqrt [6]{a}-\sqrt {3} \sqrt [6]{b} \sqrt {x}}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{6 a^{5/6}}+\frac {\int \frac {\sqrt {3} \sqrt [6]{b} \sqrt {x}+2 \sqrt [6]{a}}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{6 a^{5/6}}\right )}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\int \frac {2 \sqrt [6]{a}-\sqrt {3} \sqrt [6]{b} \sqrt {x}}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{6 a^{5/6}}+\frac {\int \frac {\sqrt {3} \sqrt [6]{b} \sqrt {x}+2 \sqrt [6]{a}}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\right )}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}-\frac {\sqrt {3} \int -\frac {\sqrt [6]{b} \left (\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} \sqrt {x}\right )}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}+\frac {\sqrt {3} \int \frac {\sqrt [6]{b} \left (2 \sqrt [6]{b} \sqrt {x}+\sqrt {3} \sqrt [6]{a}\right )}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\right )}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}+\frac {\sqrt {3} \int \frac {\sqrt [6]{b} \left (\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} \sqrt {x}\right )}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}+\frac {\sqrt {3} \int \frac {\sqrt [6]{b} \left (2 \sqrt [6]{b} \sqrt {x}+\sqrt {3} \sqrt [6]{a}\right )}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\right )}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}+\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} \sqrt {x}}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt [6]{a} \int \frac {1}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}+\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [6]{b} \sqrt {x}+\sqrt {3} \sqrt [6]{a}}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\right )}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {\int \frac {1}{-x-\frac {1}{3}}d\left (1-\frac {2 \sqrt [6]{b} \sqrt {x}}{\sqrt {3} \sqrt [6]{a}}\right )}{\sqrt {3} \sqrt [6]{b}}+\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} \sqrt {x}}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [6]{b} \sqrt {x}+\sqrt {3} \sqrt [6]{a}}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}-\frac {\int \frac {1}{-x-\frac {1}{3}}d\left (\frac {2 \sqrt [6]{b} \sqrt {x}}{\sqrt {3} \sqrt [6]{a}}+1\right )}{\sqrt {3} \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\right )}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3} \sqrt [6]{a}-2 \sqrt [6]{b} \sqrt {x}}{\sqrt [3]{b} x-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}-\frac {\arctan \left (\sqrt {3} \left (1-\frac {2 \sqrt [6]{b} \sqrt {x}}{\sqrt {3} \sqrt [6]{a}}\right )\right )}{\sqrt [6]{b}}}{6 a^{5/6}}+\frac {\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt [6]{b} \sqrt {x}+\sqrt {3} \sqrt [6]{a}}{\sqrt [3]{b} x+\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}}d\sqrt {x}+\frac {\arctan \left (\sqrt {3} \left (\frac {2 \sqrt [6]{b} \sqrt {x}}{\sqrt {3} \sqrt [6]{a}}+1\right )\right )}{\sqrt [6]{b}}}{6 a^{5/6}}+\frac {\arctan \left (\frac {\sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}\right )}{b}+\frac {2 B \sqrt {x}}{b}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 (A b-a B) \left (\frac {\arctan \left (\frac {\sqrt [6]{b} \sqrt {x}}{\sqrt [6]{a}}\right )}{3 a^{5/6} \sqrt [6]{b}}+\frac {-\frac {\arctan \left (\sqrt {3} \left (1-\frac {2 \sqrt [6]{b} \sqrt {x}}{\sqrt {3} \sqrt [6]{a}}\right )\right )}{\sqrt [6]{b}}-\frac {\sqrt {3} \log \left (-\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}+\sqrt [3]{b} x\right )}{2 \sqrt [6]{b}}}{6 a^{5/6}}+\frac {\frac {\arctan \left (\sqrt {3} \left (\frac {2 \sqrt [6]{b} \sqrt {x}}{\sqrt {3} \sqrt [6]{a}}+1\right )\right )}{\sqrt [6]{b}}+\frac {\sqrt {3} \log \left (\sqrt {3} \sqrt [6]{a} \sqrt [6]{b} \sqrt {x}+\sqrt [3]{a}+\sqrt [3]{b} x\right )}{2 \sqrt [6]{b}}}{6 a^{5/6}}\right )}{b}+\frac {2 B \sqrt {x}}{b}\)

Input:

Int[(A + B*x^3)/(Sqrt[x]*(a + b*x^3)),x]
 

Output:

(2*B*Sqrt[x])/b + (2*(A*b - a*B)*(ArcTan[(b^(1/6)*Sqrt[x])/a^(1/6)]/(3*a^( 
5/6)*b^(1/6)) + (-(ArcTan[Sqrt[3]*(1 - (2*b^(1/6)*Sqrt[x])/(Sqrt[3]*a^(1/6 
)))]/b^(1/6)) - (Sqrt[3]*Log[a^(1/3) - Sqrt[3]*a^(1/6)*b^(1/6)*Sqrt[x] + b 
^(1/3)*x])/(2*b^(1/6)))/(6*a^(5/6)) + (ArcTan[Sqrt[3]*(1 + (2*b^(1/6)*Sqrt 
[x])/(Sqrt[3]*a^(1/6)))]/b^(1/6) + (Sqrt[3]*Log[a^(1/3) + Sqrt[3]*a^(1/6)* 
b^(1/6)*Sqrt[x] + b^(1/3)*x])/(2*b^(1/6)))/(6*a^(5/6))))/b
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 753
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[a/ 
b, n]], s = Denominator[Rt[a/b, n]], k, u, v}, Simp[u = Int[(r - s*Cos[(2*k 
 - 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x] + Int[ 
(r + s*Cos[(2*k - 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2* 
x^2), x]; 2*(r^2/(a*n))   Int[1/(r^2 + s^2*x^2), x] + 2*(r/(a*n))   Sum[u, 
{k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && PosQ[a 
/b]
 

rule 851
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = 
 Denominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^ 
n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && 
FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 959
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p 
+ 1) + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m + n*(p 
 + 1) + 1))   Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, 
 n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[m + n*(p + 1) + 1, 0]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [A] (verified)

Time = 0.83 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.92

method result size
risch \(\frac {2 B \sqrt {x}}{b}+\frac {\left (A b -B a \right ) \left (\frac {2 \left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {\sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{3 a}-\frac {\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \ln \left (x -\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \sqrt {x}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{6 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {2 \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}-\sqrt {3}\right )}{3 a}+\frac {\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \ln \left (x +\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \sqrt {x}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{6 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {2 \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}+\sqrt {3}\right )}{3 a}\right )}{b}\) \(187\)
derivativedivides \(\frac {2 B \sqrt {x}}{b}+\frac {2 \left (\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {\sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{3 a}+\frac {\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \ln \left (x +\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \sqrt {x}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{12 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {2 \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}+\sqrt {3}\right )}{6 a}-\frac {\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \ln \left (x -\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \sqrt {x}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{12 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {2 \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}-\sqrt {3}\right )}{6 a}\right ) \left (A b -B a \right )}{b}\) \(188\)
default \(\frac {2 B \sqrt {x}}{b}+\frac {2 \left (\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {\sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{3 a}+\frac {\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \ln \left (x +\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \sqrt {x}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{12 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {2 \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}+\sqrt {3}\right )}{6 a}-\frac {\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \ln \left (x -\sqrt {3}\, \left (\frac {a}{b}\right )^{\frac {1}{6}} \sqrt {x}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{12 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{6}} \arctan \left (\frac {2 \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}-\sqrt {3}\right )}{6 a}\right ) \left (A b -B a \right )}{b}\) \(188\)

Input:

int((B*x^3+A)/x^(1/2)/(b*x^3+a),x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

2*B*x^(1/2)/b+(A*b-B*a)/b*(2/3/a*(a/b)^(1/6)*arctan(x^(1/2)/(a/b)^(1/6))-1 
/6/a*3^(1/2)*(a/b)^(1/6)*ln(x-3^(1/2)*(a/b)^(1/6)*x^(1/2)+(a/b)^(1/3))+1/3 
/a*(a/b)^(1/6)*arctan(2*x^(1/2)/(a/b)^(1/6)-3^(1/2))+1/6/a*3^(1/2)*(a/b)^( 
1/6)*ln(x+3^(1/2)*(a/b)^(1/6)*x^(1/2)+(a/b)^(1/3))+1/3/a*(a/b)^(1/6)*arcta 
n(2*x^(1/2)/(a/b)^(1/6)+3^(1/2)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1245 vs. \(2 (147) = 294\).

Time = 0.14 (sec) , antiderivative size = 1245, normalized size of antiderivative = 6.10 \[ \int \frac {A+B x^3}{\sqrt {x} \left (a+b x^3\right )} \, dx=\text {Too large to display} \] Input:

integrate((B*x^3+A)/x^(1/2)/(b*x^3+a),x, algorithm="fricas")
 

Output:

1/6*(2*b*(-(B^6*a^6 - 6*A*B^5*a^5*b + 15*A^2*B^4*a^4*b^2 - 20*A^3*B^3*a^3* 
b^3 + 15*A^4*B^2*a^2*b^4 - 6*A^5*B*a*b^5 + A^6*b^6)/(a^5*b^7))^(1/6)*log(a 
*b*(-(B^6*a^6 - 6*A*B^5*a^5*b + 15*A^2*B^4*a^4*b^2 - 20*A^3*B^3*a^3*b^3 + 
15*A^4*B^2*a^2*b^4 - 6*A^5*B*a*b^5 + A^6*b^6)/(a^5*b^7))^(1/6) - (B*a - A* 
b)*sqrt(x)) - 2*b*(-(B^6*a^6 - 6*A*B^5*a^5*b + 15*A^2*B^4*a^4*b^2 - 20*A^3 
*B^3*a^3*b^3 + 15*A^4*B^2*a^2*b^4 - 6*A^5*B*a*b^5 + A^6*b^6)/(a^5*b^7))^(1 
/6)*log(-a*b*(-(B^6*a^6 - 6*A*B^5*a^5*b + 15*A^2*B^4*a^4*b^2 - 20*A^3*B^3* 
a^3*b^3 + 15*A^4*B^2*a^2*b^4 - 6*A^5*B*a*b^5 + A^6*b^6)/(a^5*b^7))^(1/6) - 
 (B*a - A*b)*sqrt(x)) + (sqrt(-3)*b + b)*(-(B^6*a^6 - 6*A*B^5*a^5*b + 15*A 
^2*B^4*a^4*b^2 - 20*A^3*B^3*a^3*b^3 + 15*A^4*B^2*a^2*b^4 - 6*A^5*B*a*b^5 + 
 A^6*b^6)/(a^5*b^7))^(1/6)*log(-2*(B*a - A*b)*sqrt(x) + (sqrt(-3)*a*b + a* 
b)*(-(B^6*a^6 - 6*A*B^5*a^5*b + 15*A^2*B^4*a^4*b^2 - 20*A^3*B^3*a^3*b^3 + 
15*A^4*B^2*a^2*b^4 - 6*A^5*B*a*b^5 + A^6*b^6)/(a^5*b^7))^(1/6)) - (sqrt(-3 
)*b + b)*(-(B^6*a^6 - 6*A*B^5*a^5*b + 15*A^2*B^4*a^4*b^2 - 20*A^3*B^3*a^3* 
b^3 + 15*A^4*B^2*a^2*b^4 - 6*A^5*B*a*b^5 + A^6*b^6)/(a^5*b^7))^(1/6)*log(- 
2*(B*a - A*b)*sqrt(x) - (sqrt(-3)*a*b + a*b)*(-(B^6*a^6 - 6*A*B^5*a^5*b + 
15*A^2*B^4*a^4*b^2 - 20*A^3*B^3*a^3*b^3 + 15*A^4*B^2*a^2*b^4 - 6*A^5*B*a*b 
^5 + A^6*b^6)/(a^5*b^7))^(1/6)) + (sqrt(-3)*b - b)*(-(B^6*a^6 - 6*A*B^5*a^ 
5*b + 15*A^2*B^4*a^4*b^2 - 20*A^3*B^3*a^3*b^3 + 15*A^4*B^2*a^2*b^4 - 6*A^5 
*B*a*b^5 + A^6*b^6)/(a^5*b^7))^(1/6)*log(-2*(B*a - A*b)*sqrt(x) + (sqrt...
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 558 vs. \(2 (197) = 394\).

Time = 5.61 (sec) , antiderivative size = 558, normalized size of antiderivative = 2.74 \[ \int \frac {A+B x^3}{\sqrt {x} \left (a+b x^3\right )} \, dx=\begin {cases} \tilde {\infty } \left (- \frac {2 A}{5 x^{\frac {5}{2}}} + 2 B \sqrt {x}\right ) & \text {for}\: a = 0 \wedge b = 0 \\\frac {- \frac {2 A}{5 x^{\frac {5}{2}}} + 2 B \sqrt {x}}{b} & \text {for}\: a = 0 \\\frac {2 A \sqrt {x} + \frac {2 B x^{\frac {7}{2}}}{7}}{a} & \text {for}\: b = 0 \\- \frac {A \sqrt [6]{- \frac {a}{b}} \log {\left (\sqrt {x} - \sqrt [6]{- \frac {a}{b}} \right )}}{3 a} + \frac {A \sqrt [6]{- \frac {a}{b}} \log {\left (\sqrt {x} + \sqrt [6]{- \frac {a}{b}} \right )}}{3 a} - \frac {A \sqrt [6]{- \frac {a}{b}} \log {\left (- 4 \sqrt {x} \sqrt [6]{- \frac {a}{b}} + 4 x + 4 \sqrt [3]{- \frac {a}{b}} \right )}}{6 a} + \frac {A \sqrt [6]{- \frac {a}{b}} \log {\left (4 \sqrt {x} \sqrt [6]{- \frac {a}{b}} + 4 x + 4 \sqrt [3]{- \frac {a}{b}} \right )}}{6 a} + \frac {\sqrt {3} A \sqrt [6]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt {x}}{3 \sqrt [6]{- \frac {a}{b}}} - \frac {\sqrt {3}}{3} \right )}}{3 a} + \frac {\sqrt {3} A \sqrt [6]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt {x}}{3 \sqrt [6]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{3 a} + \frac {2 B \sqrt {x}}{b} + \frac {B \sqrt [6]{- \frac {a}{b}} \log {\left (\sqrt {x} - \sqrt [6]{- \frac {a}{b}} \right )}}{3 b} - \frac {B \sqrt [6]{- \frac {a}{b}} \log {\left (\sqrt {x} + \sqrt [6]{- \frac {a}{b}} \right )}}{3 b} + \frac {B \sqrt [6]{- \frac {a}{b}} \log {\left (- 4 \sqrt {x} \sqrt [6]{- \frac {a}{b}} + 4 x + 4 \sqrt [3]{- \frac {a}{b}} \right )}}{6 b} - \frac {B \sqrt [6]{- \frac {a}{b}} \log {\left (4 \sqrt {x} \sqrt [6]{- \frac {a}{b}} + 4 x + 4 \sqrt [3]{- \frac {a}{b}} \right )}}{6 b} - \frac {\sqrt {3} B \sqrt [6]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt {x}}{3 \sqrt [6]{- \frac {a}{b}}} - \frac {\sqrt {3}}{3} \right )}}{3 b} - \frac {\sqrt {3} B \sqrt [6]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt {x}}{3 \sqrt [6]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{3 b} & \text {otherwise} \end {cases} \] Input:

integrate((B*x**3+A)/x**(1/2)/(b*x**3+a),x)
 

Output:

Piecewise((zoo*(-2*A/(5*x**(5/2)) + 2*B*sqrt(x)), Eq(a, 0) & Eq(b, 0)), (( 
-2*A/(5*x**(5/2)) + 2*B*sqrt(x))/b, Eq(a, 0)), ((2*A*sqrt(x) + 2*B*x**(7/2 
)/7)/a, Eq(b, 0)), (-A*(-a/b)**(1/6)*log(sqrt(x) - (-a/b)**(1/6))/(3*a) + 
A*(-a/b)**(1/6)*log(sqrt(x) + (-a/b)**(1/6))/(3*a) - A*(-a/b)**(1/6)*log(- 
4*sqrt(x)*(-a/b)**(1/6) + 4*x + 4*(-a/b)**(1/3))/(6*a) + A*(-a/b)**(1/6)*l 
og(4*sqrt(x)*(-a/b)**(1/6) + 4*x + 4*(-a/b)**(1/3))/(6*a) + sqrt(3)*A*(-a/ 
b)**(1/6)*atan(2*sqrt(3)*sqrt(x)/(3*(-a/b)**(1/6)) - sqrt(3)/3)/(3*a) + sq 
rt(3)*A*(-a/b)**(1/6)*atan(2*sqrt(3)*sqrt(x)/(3*(-a/b)**(1/6)) + sqrt(3)/3 
)/(3*a) + 2*B*sqrt(x)/b + B*(-a/b)**(1/6)*log(sqrt(x) - (-a/b)**(1/6))/(3* 
b) - B*(-a/b)**(1/6)*log(sqrt(x) + (-a/b)**(1/6))/(3*b) + B*(-a/b)**(1/6)* 
log(-4*sqrt(x)*(-a/b)**(1/6) + 4*x + 4*(-a/b)**(1/3))/(6*b) - B*(-a/b)**(1 
/6)*log(4*sqrt(x)*(-a/b)**(1/6) + 4*x + 4*(-a/b)**(1/3))/(6*b) - sqrt(3)*B 
*(-a/b)**(1/6)*atan(2*sqrt(3)*sqrt(x)/(3*(-a/b)**(1/6)) - sqrt(3)/3)/(3*b) 
 - sqrt(3)*B*(-a/b)**(1/6)*atan(2*sqrt(3)*sqrt(x)/(3*(-a/b)**(1/6)) + sqrt 
(3)/3)/(3*b), True))
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.36 \[ \int \frac {A+B x^3}{\sqrt {x} \left (a+b x^3\right )} \, dx=\frac {2 \, B \sqrt {x}}{b} - \frac {\frac {\sqrt {3} {\left (B a - A b\right )} \log \left (\sqrt {3} a^{\frac {1}{6}} b^{\frac {1}{6}} \sqrt {x} + b^{\frac {1}{3}} x + a^{\frac {1}{3}}\right )}{a^{\frac {5}{6}} b^{\frac {1}{6}}} - \frac {\sqrt {3} {\left (B a - A b\right )} \log \left (-\sqrt {3} a^{\frac {1}{6}} b^{\frac {1}{6}} \sqrt {x} + b^{\frac {1}{3}} x + a^{\frac {1}{3}}\right )}{a^{\frac {5}{6}} b^{\frac {1}{6}}} + \frac {4 \, {\left (B a b^{\frac {1}{3}} - A b^{\frac {4}{3}}\right )} \arctan \left (\frac {b^{\frac {1}{3}} \sqrt {x}}{\sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}}\right )}{a^{\frac {2}{3}} b^{\frac {1}{3}} \sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}} + \frac {2 \, {\left (B a^{\frac {4}{3}} b^{\frac {1}{3}} - A a^{\frac {1}{3}} b^{\frac {4}{3}}\right )} \arctan \left (\frac {\sqrt {3} a^{\frac {1}{6}} b^{\frac {1}{6}} + 2 \, b^{\frac {1}{3}} \sqrt {x}}{\sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}}\right )}{a b^{\frac {1}{3}} \sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}} + \frac {2 \, {\left (B a^{\frac {4}{3}} b^{\frac {1}{3}} - A a^{\frac {1}{3}} b^{\frac {4}{3}}\right )} \arctan \left (-\frac {\sqrt {3} a^{\frac {1}{6}} b^{\frac {1}{6}} - 2 \, b^{\frac {1}{3}} \sqrt {x}}{\sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}}\right )}{a b^{\frac {1}{3}} \sqrt {a^{\frac {1}{3}} b^{\frac {1}{3}}}}}{6 \, b} \] Input:

integrate((B*x^3+A)/x^(1/2)/(b*x^3+a),x, algorithm="maxima")
 

Output:

2*B*sqrt(x)/b - 1/6*(sqrt(3)*(B*a - A*b)*log(sqrt(3)*a^(1/6)*b^(1/6)*sqrt( 
x) + b^(1/3)*x + a^(1/3))/(a^(5/6)*b^(1/6)) - sqrt(3)*(B*a - A*b)*log(-sqr 
t(3)*a^(1/6)*b^(1/6)*sqrt(x) + b^(1/3)*x + a^(1/3))/(a^(5/6)*b^(1/6)) + 4* 
(B*a*b^(1/3) - A*b^(4/3))*arctan(b^(1/3)*sqrt(x)/sqrt(a^(1/3)*b^(1/3)))/(a 
^(2/3)*b^(1/3)*sqrt(a^(1/3)*b^(1/3))) + 2*(B*a^(4/3)*b^(1/3) - A*a^(1/3)*b 
^(4/3))*arctan((sqrt(3)*a^(1/6)*b^(1/6) + 2*b^(1/3)*sqrt(x))/sqrt(a^(1/3)* 
b^(1/3)))/(a*b^(1/3)*sqrt(a^(1/3)*b^(1/3))) + 2*(B*a^(4/3)*b^(1/3) - A*a^( 
1/3)*b^(4/3))*arctan(-(sqrt(3)*a^(1/6)*b^(1/6) - 2*b^(1/3)*sqrt(x))/sqrt(a 
^(1/3)*b^(1/3)))/(a*b^(1/3)*sqrt(a^(1/3)*b^(1/3))))/b
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 280, normalized size of antiderivative = 1.37 \[ \int \frac {A+B x^3}{\sqrt {x} \left (a+b x^3\right )} \, dx=\frac {2 \, B \sqrt {x}}{b} - \frac {\sqrt {3} {\left (\left (a b^{5}\right )^{\frac {1}{6}} B a - \left (a b^{5}\right )^{\frac {1}{6}} A b\right )} \log \left (\sqrt {3} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{6}} + x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{6 \, a b^{2}} + \frac {\sqrt {3} {\left (\left (a b^{5}\right )^{\frac {1}{6}} B a - \left (a b^{5}\right )^{\frac {1}{6}} A b\right )} \log \left (-\sqrt {3} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{6}} + x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{6 \, a b^{2}} - \frac {{\left (\left (a b^{5}\right )^{\frac {1}{6}} B a - \left (a b^{5}\right )^{\frac {1}{6}} A b\right )} \arctan \left (\frac {\sqrt {3} \left (\frac {a}{b}\right )^{\frac {1}{6}} + 2 \, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{3 \, a b^{2}} - \frac {{\left (\left (a b^{5}\right )^{\frac {1}{6}} B a - \left (a b^{5}\right )^{\frac {1}{6}} A b\right )} \arctan \left (-\frac {\sqrt {3} \left (\frac {a}{b}\right )^{\frac {1}{6}} - 2 \, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{3 \, a b^{2}} - \frac {2 \, {\left (\left (a b^{5}\right )^{\frac {1}{6}} B a - \left (a b^{5}\right )^{\frac {1}{6}} A b\right )} \arctan \left (\frac {\sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{6}}}\right )}{3 \, a b^{2}} \] Input:

integrate((B*x^3+A)/x^(1/2)/(b*x^3+a),x, algorithm="giac")
 

Output:

2*B*sqrt(x)/b - 1/6*sqrt(3)*((a*b^5)^(1/6)*B*a - (a*b^5)^(1/6)*A*b)*log(sq 
rt(3)*sqrt(x)*(a/b)^(1/6) + x + (a/b)^(1/3))/(a*b^2) + 1/6*sqrt(3)*((a*b^5 
)^(1/6)*B*a - (a*b^5)^(1/6)*A*b)*log(-sqrt(3)*sqrt(x)*(a/b)^(1/6) + x + (a 
/b)^(1/3))/(a*b^2) - 1/3*((a*b^5)^(1/6)*B*a - (a*b^5)^(1/6)*A*b)*arctan((s 
qrt(3)*(a/b)^(1/6) + 2*sqrt(x))/(a/b)^(1/6))/(a*b^2) - 1/3*((a*b^5)^(1/6)* 
B*a - (a*b^5)^(1/6)*A*b)*arctan(-(sqrt(3)*(a/b)^(1/6) - 2*sqrt(x))/(a/b)^( 
1/6))/(a*b^2) - 2/3*((a*b^5)^(1/6)*B*a - (a*b^5)^(1/6)*A*b)*arctan(sqrt(x) 
/(a/b)^(1/6))/(a*b^2)
 

Mupad [B] (verification not implemented)

Time = 0.43 (sec) , antiderivative size = 1915, normalized size of antiderivative = 9.39 \[ \int \frac {A+B x^3}{\sqrt {x} \left (a+b x^3\right )} \, dx=\text {Too large to display} \] Input:

int((A + B*x^3)/(x^(1/2)*(a + b*x^3)),x)
 

Output:

(2*B*x^(1/2))/b + (atan((((x^(1/2)*(96*A^4*b^5 + 96*B^4*a^4*b + 576*A^2*B^ 
2*a^2*b^3 - 384*A^3*B*a*b^4 - 384*A*B^3*a^3*b^2) - ((A*b - B*a)*(288*A^3*a 
*b^5 - 288*B^3*a^4*b^2 + 864*A*B^2*a^3*b^3 - 864*A^2*B*a^2*b^4))/(3*(-a)^( 
5/6)*b^(7/6)))*(A*b - B*a)*1i)/(3*(-a)^(5/6)*b^(7/6)) + ((x^(1/2)*(96*A^4* 
b^5 + 96*B^4*a^4*b + 576*A^2*B^2*a^2*b^3 - 384*A^3*B*a*b^4 - 384*A*B^3*a^3 
*b^2) + ((A*b - B*a)*(288*A^3*a*b^5 - 288*B^3*a^4*b^2 + 864*A*B^2*a^3*b^3 
- 864*A^2*B*a^2*b^4))/(3*(-a)^(5/6)*b^(7/6)))*(A*b - B*a)*1i)/(3*(-a)^(5/6 
)*b^(7/6)))/(((x^(1/2)*(96*A^4*b^5 + 96*B^4*a^4*b + 576*A^2*B^2*a^2*b^3 - 
384*A^3*B*a*b^4 - 384*A*B^3*a^3*b^2) - ((A*b - B*a)*(288*A^3*a*b^5 - 288*B 
^3*a^4*b^2 + 864*A*B^2*a^3*b^3 - 864*A^2*B*a^2*b^4))/(3*(-a)^(5/6)*b^(7/6) 
))*(A*b - B*a))/(3*(-a)^(5/6)*b^(7/6)) - ((x^(1/2)*(96*A^4*b^5 + 96*B^4*a^ 
4*b + 576*A^2*B^2*a^2*b^3 - 384*A^3*B*a*b^4 - 384*A*B^3*a^3*b^2) + ((A*b - 
 B*a)*(288*A^3*a*b^5 - 288*B^3*a^4*b^2 + 864*A*B^2*a^3*b^3 - 864*A^2*B*a^2 
*b^4))/(3*(-a)^(5/6)*b^(7/6)))*(A*b - B*a))/(3*(-a)^(5/6)*b^(7/6))))*(A*b 
- B*a)*2i)/(3*(-a)^(5/6)*b^(7/6)) + (atan(((((3^(1/2)*1i)/2 - 1/2)*(A*b - 
B*a)*(x^(1/2)*(96*A^4*b^5 + 96*B^4*a^4*b + 576*A^2*B^2*a^2*b^3 - 384*A^3*B 
*a*b^4 - 384*A*B^3*a^3*b^2) - (((3^(1/2)*1i)/2 - 1/2)*(A*b - B*a)*(288*A^3 
*a*b^5 - 288*B^3*a^4*b^2 + 864*A*B^2*a^3*b^3 - 864*A^2*B*a^2*b^4))/(3*(-a) 
^(5/6)*b^(7/6)))*1i)/(3*(-a)^(5/6)*b^(7/6)) + (((3^(1/2)*1i)/2 - 1/2)*(A*b 
 - B*a)*(x^(1/2)*(96*A^4*b^5 + 96*B^4*a^4*b + 576*A^2*B^2*a^2*b^3 - 384...
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 4, normalized size of antiderivative = 0.02 \[ \int \frac {A+B x^3}{\sqrt {x} \left (a+b x^3\right )} \, dx=2 \sqrt {x} \] Input:

int((B*x^3+A)/x^(1/2)/(b*x^3+a),x)
 

Output:

2*sqrt(x)