\(\int \frac {x^4 (A+B x^3)}{(a+b x^3)^{3/2}} \, dx\) [218]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 546 \[ \int \frac {x^4 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx=-\frac {2 (A b-a B) x^2}{3 b^2 \sqrt {a+b x^3}}+\frac {2 B x^2 \sqrt {a+b x^3}}{7 b^2}+\frac {8 (7 A b-10 a B) \sqrt {a+b x^3}}{21 b^{8/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {4 \sqrt {2-\sqrt {3}} \sqrt [3]{a} (7 A b-10 a B) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{7\ 3^{3/4} b^{8/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {8 \sqrt {2} \sqrt [3]{a} (7 A b-10 a B) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{21 \sqrt [4]{3} b^{8/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

-2/3*(A*b-B*a)*x^2/b^2/(b*x^3+a)^(1/2)+2/7*B*x^2*(b*x^3+a)^(1/2)/b^2+8/21* 
(7*A*b-10*B*a)*(b*x^3+a)^(1/2)/b^(8/3)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)-4/2 
1*(1/2*6^(1/2)-1/2*2^(1/2))*a^(1/3)*(7*A*b-10*B*a)*(a^(1/3)+b^(1/3)*x)*((a 
^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^( 
1/2)*EllipticE(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3 
)*x),I*3^(1/2)+2*I)*3^(1/4)/b^(8/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/ 
2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)+8/63*2^(1/2)*a^(1/3)*(7*A* 
b-10*B*a)*(a^(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1 
+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/ 
3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/b^(8/3)/(a^(1 
/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a) 
^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.09 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.14 \[ \int \frac {x^4 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 x^2 \left (7 A b-10 a B+b B x^3+(-7 A b+10 a B) \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},\frac {3}{2},\frac {5}{3},-\frac {b x^3}{a}\right )\right )}{7 b^2 \sqrt {a+b x^3}} \] Input:

Integrate[(x^4*(A + B*x^3))/(a + b*x^3)^(3/2),x]
 

Output:

(2*x^2*(7*A*b - 10*a*B + b*B*x^3 + (-7*A*b + 10*a*B)*Sqrt[1 + (b*x^3)/a]*H 
ypergeometric2F1[2/3, 3/2, 5/3, -((b*x^3)/a)]))/(7*b^2*Sqrt[a + b*x^3])
 

Rubi [A] (warning: unable to verify)

Time = 0.94 (sec) , antiderivative size = 552, normalized size of antiderivative = 1.01, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {959, 817, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 959

\(\displaystyle \frac {(7 A b-10 a B) \int \frac {x^4}{\left (b x^3+a\right )^{3/2}}dx}{7 b}+\frac {2 B x^5}{7 b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {(7 A b-10 a B) \left (\frac {4 \int \frac {x}{\sqrt {b x^3+a}}dx}{3 b}-\frac {2 x^2}{3 b \sqrt {a+b x^3}}\right )}{7 b}+\frac {2 B x^5}{7 b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {(7 A b-10 a B) \left (\frac {4 \left (\frac {\int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \int \frac {1}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}\right )}{3 b}-\frac {2 x^2}{3 b \sqrt {a+b x^3}}\right )}{7 b}+\frac {2 B x^5}{7 b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {(7 A b-10 a B) \left (\frac {4 \left (\frac {\int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{3 b}-\frac {2 x^2}{3 b \sqrt {a+b x^3}}\right )}{7 b}+\frac {2 B x^5}{7 b \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {(7 A b-10 a B) \left (\frac {4 \left (\frac {\frac {2 \sqrt {a+b x^3}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{3 b}-\frac {2 x^2}{3 b \sqrt {a+b x^3}}\right )}{7 b}+\frac {2 B x^5}{7 b \sqrt {a+b x^3}}\)

Input:

Int[(x^4*(A + B*x^3))/(a + b*x^3)^(3/2),x]
 

Output:

(2*B*x^5)/(7*b*Sqrt[a + b*x^3]) + ((7*A*b - 10*a*B)*((-2*x^2)/(3*b*Sqrt[a 
+ b*x^3]) + (4*(((2*Sqrt[a + b*x^3])/(b^(1/3)*((1 + Sqrt[3])*a^(1/3) + b^( 
1/3)*x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x)*Sqrt[( 
a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3 
)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3] 
)*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) 
+ b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3]))/b^( 
1/3) - (2*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x)*Sq 
rt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^ 
(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqr 
t[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*b^(2/3)*Sqrt[(a^(1/ 
3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + 
b*x^3])))/(3*b)))/(7*b)
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 959
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p 
+ 1) + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m + n*(p 
 + 1) + 1))   Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, 
 n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[m + n*(p + 1) + 1, 0]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 2.06 (sec) , antiderivative size = 504, normalized size of antiderivative = 0.92

method result size
elliptic \(-\frac {2 x^{2} \left (A b -B a \right )}{3 b^{2} \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}+\frac {2 B \,x^{2} \sqrt {b \,x^{3}+a}}{7 b^{2}}-\frac {2 i \left (\frac {\frac {4 A b}{3}-\frac {4 B a}{3}}{b^{2}}-\frac {4 B a}{7 b^{2}}\right ) \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )+\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{b}\right )}{3 b \sqrt {b \,x^{3}+a}}\) \(504\)
default \(\text {Expression too large to display}\) \(937\)
risch \(\text {Expression too large to display}\) \(958\)

Input:

int(x^4*(B*x^3+A)/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2/3/b^2*x^2*(A*b-B*a)/((x^3+a/b)*b)^(1/2)+2/7*B*x^2*(b*x^3+a)^(1/2)/b^2-2 
/3*I*(4/3*(A*b-B*a)/b^2-4/7*B/b^2*a)*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b* 
(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^( 
1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^ 
2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3 
))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*((-3/2/b*(-a*b^2)^(1/3) 
+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2 
)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I 
*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^ 
(1/3)))^(1/2))+1/b*(-a*b^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^ 
2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),( 
I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2) 
^(1/3)))^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.19 \[ \int \frac {x^4 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 \, {\left (4 \, {\left ({\left (10 \, B a b - 7 \, A b^{2}\right )} x^{3} + 10 \, B a^{2} - 7 \, A a b\right )} \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right ) + {\left (3 \, B b^{2} x^{5} + {\left (10 \, B a b - 7 \, A b^{2}\right )} x^{2}\right )} \sqrt {b x^{3} + a}\right )}}{21 \, {\left (b^{4} x^{3} + a b^{3}\right )}} \] Input:

integrate(x^4*(B*x^3+A)/(b*x^3+a)^(3/2),x, algorithm="fricas")
 

Output:

2/21*(4*((10*B*a*b - 7*A*b^2)*x^3 + 10*B*a^2 - 7*A*a*b)*sqrt(b)*weierstras 
sZeta(0, -4*a/b, weierstrassPInverse(0, -4*a/b, x)) + (3*B*b^2*x^5 + (10*B 
*a*b - 7*A*b^2)*x^2)*sqrt(b*x^3 + a))/(b^4*x^3 + a*b^3)
                                                                                    
                                                                                    
 

Sympy [A] (verification not implemented)

Time = 5.25 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.15 \[ \int \frac {x^4 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {A x^{5} \Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {5}{3} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {8}{3}\right )} + \frac {B x^{8} \Gamma \left (\frac {8}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {8}{3} \\ \frac {11}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {11}{3}\right )} \] Input:

integrate(x**4*(B*x**3+A)/(b*x**3+a)**(3/2),x)
 

Output:

A*x**5*gamma(5/3)*hyper((3/2, 5/3), (8/3,), b*x**3*exp_polar(I*pi)/a)/(3*a 
**(3/2)*gamma(8/3)) + B*x**8*gamma(8/3)*hyper((3/2, 8/3), (11/3,), b*x**3* 
exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(11/3))
 

Maxima [F]

\[ \int \frac {x^4 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {{\left (B x^{3} + A\right )} x^{4}}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^4*(B*x^3+A)/(b*x^3+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((B*x^3 + A)*x^4/(b*x^3 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {x^4 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {{\left (B x^{3} + A\right )} x^{4}}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^4*(B*x^3+A)/(b*x^3+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((B*x^3 + A)*x^4/(b*x^3 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\int \frac {x^4\,\left (B\,x^3+A\right )}{{\left (b\,x^3+a\right )}^{3/2}} \,d x \] Input:

int((x^4*(A + B*x^3))/(a + b*x^3)^(3/2),x)
 

Output:

int((x^4*(A + B*x^3))/(a + b*x^3)^(3/2), x)
 

Reduce [F]

\[ \int \frac {x^4 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {\frac {2 \sqrt {b \,x^{3}+a}\, x^{2}}{7}-\frac {4 \left (\int \frac {\sqrt {b \,x^{3}+a}\, x}{b \,x^{3}+a}d x \right ) a}{7}}{b} \] Input:

int(x^4*(B*x^3+A)/(b*x^3+a)^(3/2),x)
 

Output:

(2*(sqrt(a + b*x**3)*x**2 - 2*int((sqrt(a + b*x**3)*x)/(a + b*x**3),x)*a)) 
/(7*b)