\(\int \frac {1}{(a+b x^3) (c+d x^3)} \, dx\) [428]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 288 \[ \int \frac {1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx=-\frac {b^{2/3} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} (b c-a d)}+\frac {d^{2/3} \arctan \left (\frac {\sqrt [3]{c}-2 \sqrt [3]{d} x}{\sqrt {3} \sqrt [3]{c}}\right )}{\sqrt {3} c^{2/3} (b c-a d)}+\frac {b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} (b c-a d)}-\frac {d^{2/3} \log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} (b c-a d)}-\frac {b^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} (b c-a d)}+\frac {d^{2/3} \log \left (c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2\right )}{6 c^{2/3} (b c-a d)} \] Output:

-1/3*b^(2/3)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)*3^(1/2)/a^(1/3))*3^(1/2)/a^( 
2/3)/(-a*d+b*c)+1/3*d^(2/3)*arctan(1/3*(c^(1/3)-2*d^(1/3)*x)*3^(1/2)/c^(1/ 
3))*3^(1/2)/c^(2/3)/(-a*d+b*c)+1/3*b^(2/3)*ln(a^(1/3)+b^(1/3)*x)/a^(2/3)/( 
-a*d+b*c)-1/3*d^(2/3)*ln(c^(1/3)+d^(1/3)*x)/c^(2/3)/(-a*d+b*c)-1/6*b^(2/3) 
*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^(2/3)/(-a*d+b*c)+1/6*d^(2/3)* 
ln(c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/c^(2/3)/(-a*d+b*c)
 

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.78 \[ \int \frac {1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx=\frac {\frac {2 \sqrt {3} b^{2/3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{a^{2/3}}-\frac {2 \sqrt {3} d^{2/3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{d} x}{\sqrt [3]{c}}}{\sqrt {3}}\right )}{c^{2/3}}-\frac {2 b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{a^{2/3}}+\frac {2 d^{2/3} \log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{c^{2/3}}+\frac {b^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{a^{2/3}}-\frac {d^{2/3} \log \left (c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2\right )}{c^{2/3}}}{-6 b c+6 a d} \] Input:

Integrate[1/((a + b*x^3)*(c + d*x^3)),x]
 

Output:

((2*Sqrt[3]*b^(2/3)*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/a^(2/3) - 
 (2*Sqrt[3]*d^(2/3)*ArcTan[(1 - (2*d^(1/3)*x)/c^(1/3))/Sqrt[3]])/c^(2/3) - 
 (2*b^(2/3)*Log[a^(1/3) + b^(1/3)*x])/a^(2/3) + (2*d^(2/3)*Log[c^(1/3) + d 
^(1/3)*x])/c^(2/3) + (b^(2/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^ 
2])/a^(2/3) - (d^(2/3)*Log[c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2])/c^( 
2/3))/(-6*b*c + 6*a*d)
 

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 248, normalized size of antiderivative = 0.86, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {917, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx\)

\(\Big \downarrow \) 917

\(\displaystyle \frac {b \int \frac {1}{b x^3+a}dx}{b c-a d}-\frac {d \int \frac {1}{d x^3+c}dx}{b c-a d}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {b \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 a^{2/3}}\right )}{b c-a d}-\frac {d \left (\frac {\int \frac {2 \sqrt [3]{c}-\sqrt [3]{d} x}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx}{3 c^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{d} x+\sqrt [3]{c}}dx}{3 c^{2/3}}\right )}{b c-a d}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {b \left (\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b c-a d}-\frac {d \left (\frac {\int \frac {2 \sqrt [3]{c}-\sqrt [3]{d} x}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx}{3 c^{2/3}}+\frac {\log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} \sqrt [3]{d}}\right )}{b c-a d}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {b \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b c-a d}-\frac {d \left (\frac {\frac {3}{2} \sqrt [3]{c} \int \frac {1}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{d} \left (\sqrt [3]{c}-2 \sqrt [3]{d} x\right )}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx}{2 \sqrt [3]{d}}}{3 c^{2/3}}+\frac {\log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} \sqrt [3]{d}}\right )}{b c-a d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b c-a d}-\frac {d \left (\frac {\frac {3}{2} \sqrt [3]{c} \int \frac {1}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx+\frac {\int \frac {\sqrt [3]{d} \left (\sqrt [3]{c}-2 \sqrt [3]{d} x\right )}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx}{2 \sqrt [3]{d}}}{3 c^{2/3}}+\frac {\log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} \sqrt [3]{d}}\right )}{b c-a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b \left (\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b c-a d}-\frac {d \left (\frac {\frac {3}{2} \sqrt [3]{c} \int \frac {1}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{c}-2 \sqrt [3]{d} x}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx}{3 c^{2/3}}+\frac {\log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} \sqrt [3]{d}}\right )}{b c-a d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {b \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b c-a d}-\frac {d \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{c}-2 \sqrt [3]{d} x}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{d} x}{\sqrt [3]{c}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{d} x}{\sqrt [3]{c}}\right )}{\sqrt [3]{d}}}{3 c^{2/3}}+\frac {\log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} \sqrt [3]{d}}\right )}{b c-a d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {b \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b c-a d}-\frac {d \left (\frac {\frac {1}{2} \int \frac {\sqrt [3]{c}-2 \sqrt [3]{d} x}{d^{2/3} x^2-\sqrt [3]{c} \sqrt [3]{d} x+c^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{d} x}{\sqrt [3]{c}}}{\sqrt {3}}\right )}{\sqrt [3]{d}}}{3 c^{2/3}}+\frac {\log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} \sqrt [3]{d}}\right )}{b c-a d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {b \left (\frac {-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\right )}{b c-a d}-\frac {d \left (\frac {-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{d} x}{\sqrt [3]{c}}}{\sqrt {3}}\right )}{\sqrt [3]{d}}-\frac {\log \left (c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2\right )}{2 \sqrt [3]{d}}}{3 c^{2/3}}+\frac {\log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} \sqrt [3]{d}}\right )}{b c-a d}\)

Input:

Int[1/((a + b*x^3)*(c + d*x^3)),x]
 

Output:

(b*(Log[a^(1/3) + b^(1/3)*x]/(3*a^(2/3)*b^(1/3)) + (-((Sqrt[3]*ArcTan[(1 - 
 (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/b^(1/3)) - Log[a^(2/3) - a^(1/3)*b^(1/3) 
*x + b^(2/3)*x^2]/(2*b^(1/3)))/(3*a^(2/3))))/(b*c - a*d) - (d*(Log[c^(1/3) 
 + d^(1/3)*x]/(3*c^(2/3)*d^(1/3)) + (-((Sqrt[3]*ArcTan[(1 - (2*d^(1/3)*x)/ 
c^(1/3))/Sqrt[3]])/d^(1/3)) - Log[c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^ 
2]/(2*d^(1/3)))/(3*c^(2/3))))/(b*c - a*d)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 917
Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Sim 
p[b/(b*c - a*d)   Int[1/(a + b*x^n), x], x] - Simp[d/(b*c - a*d)   Int[1/(c 
 + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [A] (verified)

Time = 0.97 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.72

method result size
default \(\frac {\left (\frac {\ln \left (x +\left (\frac {c}{d}\right )^{\frac {1}{3}}\right )}{3 d \left (\frac {c}{d}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {c}{d}\right )^{\frac {1}{3}} x +\left (\frac {c}{d}\right )^{\frac {2}{3}}\right )}{6 d \left (\frac {c}{d}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {c}{d}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 d \left (\frac {c}{d}\right )^{\frac {2}{3}}}\right ) d}{a d -b c}-\frac {\left (\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right ) b}{a d -b c}\) \(207\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (a^{3} c^{2} d^{3}-3 a^{2} b \,c^{3} d^{2}+3 a \,b^{2} c^{4} d -c^{5} b^{3}\right ) \textit {\_Z}^{3}-d^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (-a^{5} d^{5}+3 a^{4} b c \,d^{4}-2 a^{3} b^{2} c^{2} d^{3}-2 a^{2} b^{3} c^{3} d^{2}+3 a \,b^{4} c^{4} d -c^{5} b^{5}\right ) \textit {\_R}^{3}-2 b^{2} d^{2}\right ) x +\left (-a^{6} c \,d^{5}+3 a^{5} b \,c^{2} d^{4}-2 a^{4} b^{2} c^{3} d^{3}-2 a^{3} b^{3} c^{4} d^{2}+3 a^{2} b^{4} c^{5} d -a \,c^{6} b^{5}\right ) \textit {\_R}^{4}+\left (a^{2} b \,d^{3}-2 a \,b^{2} c \,d^{2}+b^{3} c^{2} d \right ) \textit {\_R} \right )\right )}{3}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (a^{5} d^{3}-3 a^{4} b c \,d^{2}+3 a^{3} b^{2} c^{2} d -a^{2} b^{3} c^{3}\right ) \textit {\_Z}^{3}+b^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (-a^{5} d^{5}+3 a^{4} b c \,d^{4}-2 a^{3} b^{2} c^{2} d^{3}-2 a^{2} b^{3} c^{3} d^{2}+3 a \,b^{4} c^{4} d -c^{5} b^{5}\right ) \textit {\_R}^{3}-2 b^{2} d^{2}\right ) x +\left (-a^{6} c \,d^{5}+3 a^{5} b \,c^{2} d^{4}-2 a^{4} b^{2} c^{3} d^{3}-2 a^{3} b^{3} c^{4} d^{2}+3 a^{2} b^{4} c^{5} d -a \,c^{6} b^{5}\right ) \textit {\_R}^{4}+\left (a^{2} b \,d^{3}-2 a \,b^{2} c \,d^{2}+b^{3} c^{2} d \right ) \textit {\_R} \right )\right )}{3}\) \(490\)

Input:

int(1/(b*x^3+a)/(d*x^3+c),x,method=_RETURNVERBOSE)
 

Output:

(1/3/d/(c/d)^(2/3)*ln(x+(c/d)^(1/3))-1/6/d/(c/d)^(2/3)*ln(x^2-(c/d)^(1/3)* 
x+(c/d)^(2/3))+1/3/d/(c/d)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(c/d)^(1/3) 
*x-1)))*d/(a*d-b*c)-(1/3/b/(a/b)^(2/3)*ln(x+(a/b)^(1/3))-1/6/b/(a/b)^(2/3) 
*ln(x^2-(a/b)^(1/3)*x+(a/b)^(2/3))+1/3/b/(a/b)^(2/3)*3^(1/2)*arctan(1/3*3^ 
(1/2)*(2/(a/b)^(1/3)*x-1)))*b/(a*d-b*c)
 

Fricas [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 254, normalized size of antiderivative = 0.88 \[ \int \frac {1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx=-\frac {2 \, \sqrt {3} \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}} \arctan \left (\frac {2 \, \sqrt {3} a x \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {2}{3}} - \sqrt {3} b}{3 \, b}\right ) + 2 \, \sqrt {3} \left (\frac {d^{2}}{c^{2}}\right )^{\frac {1}{3}} \arctan \left (\frac {2 \, \sqrt {3} c x \left (\frac {d^{2}}{c^{2}}\right )^{\frac {2}{3}} - \sqrt {3} d}{3 \, d}\right ) - \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}} \log \left (b^{2} x^{2} + a b x \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}} + a^{2} \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {2}{3}}\right ) - \left (\frac {d^{2}}{c^{2}}\right )^{\frac {1}{3}} \log \left (d^{2} x^{2} - c d x \left (\frac {d^{2}}{c^{2}}\right )^{\frac {1}{3}} + c^{2} \left (\frac {d^{2}}{c^{2}}\right )^{\frac {2}{3}}\right ) + 2 \, \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}} \log \left (b x - a \left (-\frac {b^{2}}{a^{2}}\right )^{\frac {1}{3}}\right ) + 2 \, \left (\frac {d^{2}}{c^{2}}\right )^{\frac {1}{3}} \log \left (d x + c \left (\frac {d^{2}}{c^{2}}\right )^{\frac {1}{3}}\right )}{6 \, {\left (b c - a d\right )}} \] Input:

integrate(1/(b*x^3+a)/(d*x^3+c),x, algorithm="fricas")
 

Output:

-1/6*(2*sqrt(3)*(-b^2/a^2)^(1/3)*arctan(1/3*(2*sqrt(3)*a*x*(-b^2/a^2)^(2/3 
) - sqrt(3)*b)/b) + 2*sqrt(3)*(d^2/c^2)^(1/3)*arctan(1/3*(2*sqrt(3)*c*x*(d 
^2/c^2)^(2/3) - sqrt(3)*d)/d) - (-b^2/a^2)^(1/3)*log(b^2*x^2 + a*b*x*(-b^2 
/a^2)^(1/3) + a^2*(-b^2/a^2)^(2/3)) - (d^2/c^2)^(1/3)*log(d^2*x^2 - c*d*x* 
(d^2/c^2)^(1/3) + c^2*(d^2/c^2)^(2/3)) + 2*(-b^2/a^2)^(1/3)*log(b*x - a*(- 
b^2/a^2)^(1/3)) + 2*(d^2/c^2)^(1/3)*log(d*x + c*(d^2/c^2)^(1/3)))/(b*c - a 
*d)
 

Sympy [A] (verification not implemented)

Time = 57.84 (sec) , antiderivative size = 447, normalized size of antiderivative = 1.55 \[ \int \frac {1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx=\operatorname {RootSum} {\left (t^{3} \cdot \left (27 a^{5} d^{3} - 81 a^{4} b c d^{2} + 81 a^{3} b^{2} c^{2} d - 27 a^{2} b^{3} c^{3}\right ) + b^{2}, \left ( t \mapsto t \log {\left (x + \frac {81 t^{4} a^{7} c^{2} d^{5} - 243 t^{4} a^{6} b c^{3} d^{4} + 162 t^{4} a^{5} b^{2} c^{4} d^{3} + 162 t^{4} a^{4} b^{3} c^{5} d^{2} - 243 t^{4} a^{3} b^{4} c^{6} d + 81 t^{4} a^{2} b^{5} c^{7} - 3 t a^{4} d^{4} + 3 t a^{3} b c d^{3} + 3 t a b^{3} c^{3} d - 3 t b^{4} c^{4}}{a^{2} b d^{3} + b^{3} c^{2} d} \right )} \right )\right )} + \operatorname {RootSum} {\left (t^{3} \cdot \left (27 a^{3} c^{2} d^{3} - 81 a^{2} b c^{3} d^{2} + 81 a b^{2} c^{4} d - 27 b^{3} c^{5}\right ) - d^{2}, \left ( t \mapsto t \log {\left (x + \frac {81 t^{4} a^{7} c^{2} d^{5} - 243 t^{4} a^{6} b c^{3} d^{4} + 162 t^{4} a^{5} b^{2} c^{4} d^{3} + 162 t^{4} a^{4} b^{3} c^{5} d^{2} - 243 t^{4} a^{3} b^{4} c^{6} d + 81 t^{4} a^{2} b^{5} c^{7} - 3 t a^{4} d^{4} + 3 t a^{3} b c d^{3} + 3 t a b^{3} c^{3} d - 3 t b^{4} c^{4}}{a^{2} b d^{3} + b^{3} c^{2} d} \right )} \right )\right )} \] Input:

integrate(1/(b*x**3+a)/(d*x**3+c),x)
 

Output:

RootSum(_t**3*(27*a**5*d**3 - 81*a**4*b*c*d**2 + 81*a**3*b**2*c**2*d - 27* 
a**2*b**3*c**3) + b**2, Lambda(_t, _t*log(x + (81*_t**4*a**7*c**2*d**5 - 2 
43*_t**4*a**6*b*c**3*d**4 + 162*_t**4*a**5*b**2*c**4*d**3 + 162*_t**4*a**4 
*b**3*c**5*d**2 - 243*_t**4*a**3*b**4*c**6*d + 81*_t**4*a**2*b**5*c**7 - 3 
*_t*a**4*d**4 + 3*_t*a**3*b*c*d**3 + 3*_t*a*b**3*c**3*d - 3*_t*b**4*c**4)/ 
(a**2*b*d**3 + b**3*c**2*d)))) + RootSum(_t**3*(27*a**3*c**2*d**3 - 81*a** 
2*b*c**3*d**2 + 81*a*b**2*c**4*d - 27*b**3*c**5) - d**2, Lambda(_t, _t*log 
(x + (81*_t**4*a**7*c**2*d**5 - 243*_t**4*a**6*b*c**3*d**4 + 162*_t**4*a** 
5*b**2*c**4*d**3 + 162*_t**4*a**4*b**3*c**5*d**2 - 243*_t**4*a**3*b**4*c** 
6*d + 81*_t**4*a**2*b**5*c**7 - 3*_t*a**4*d**4 + 3*_t*a**3*b*c*d**3 + 3*_t 
*a*b**3*c**3*d - 3*_t*b**4*c**4)/(a**2*b*d**3 + b**3*c**2*d))))
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.02 \[ \int \frac {1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx=\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, {\left (b c \left (\frac {a}{b}\right )^{\frac {1}{3}} - a d \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )} \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {c}{d}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {c}{d}\right )^{\frac {1}{3}}}\right )}{3 \, {\left (b c \left (\frac {c}{d}\right )^{\frac {1}{3}} - a d \left (\frac {c}{d}\right )^{\frac {1}{3}}\right )} \left (\frac {c}{d}\right )^{\frac {1}{3}}} - \frac {\log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, {\left (b c \left (\frac {a}{b}\right )^{\frac {2}{3}} - a d \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}} + \frac {\log \left (x^{2} - x \left (\frac {c}{d}\right )^{\frac {1}{3}} + \left (\frac {c}{d}\right )^{\frac {2}{3}}\right )}{6 \, {\left (b c \left (\frac {c}{d}\right )^{\frac {2}{3}} - a d \left (\frac {c}{d}\right )^{\frac {2}{3}}\right )}} + \frac {\log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, {\left (b c \left (\frac {a}{b}\right )^{\frac {2}{3}} - a d \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}} - \frac {\log \left (x + \left (\frac {c}{d}\right )^{\frac {1}{3}}\right )}{3 \, {\left (b c \left (\frac {c}{d}\right )^{\frac {2}{3}} - a d \left (\frac {c}{d}\right )^{\frac {2}{3}}\right )}} \] Input:

integrate(1/(b*x^3+a)/(d*x^3+c),x, algorithm="maxima")
 

Output:

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/((b*c*(a/b 
)^(1/3) - a*d*(a/b)^(1/3))*(a/b)^(1/3)) - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*( 
2*x - (c/d)^(1/3))/(c/d)^(1/3))/((b*c*(c/d)^(1/3) - a*d*(c/d)^(1/3))*(c/d) 
^(1/3)) - 1/6*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(b*c*(a/b)^(2/3) - a* 
d*(a/b)^(2/3)) + 1/6*log(x^2 - x*(c/d)^(1/3) + (c/d)^(2/3))/(b*c*(c/d)^(2/ 
3) - a*d*(c/d)^(2/3)) + 1/3*log(x + (a/b)^(1/3))/(b*c*(a/b)^(2/3) - a*d*(a 
/b)^(2/3)) - 1/3*log(x + (c/d)^(1/3))/(b*c*(c/d)^(2/3) - a*d*(c/d)^(2/3))
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 278, normalized size of antiderivative = 0.97 \[ \int \frac {1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx=-\frac {b \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, {\left (a b c - a^{2} d\right )}} + \frac {d \left (-\frac {c}{d}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {c}{d}\right )^{\frac {1}{3}} \right |}\right )}{3 \, {\left (b c^{2} - a c d\right )}} + \frac {\left (-a b^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{\sqrt {3} a b c - \sqrt {3} a^{2} d} - \frac {\left (-c d^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {c}{d}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {c}{d}\right )^{\frac {1}{3}}}\right )}{\sqrt {3} b c^{2} - \sqrt {3} a c d} + \frac {\left (-a b^{2}\right )^{\frac {1}{3}} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, {\left (a b c - a^{2} d\right )}} - \frac {\left (-c d^{2}\right )^{\frac {1}{3}} \log \left (x^{2} + x \left (-\frac {c}{d}\right )^{\frac {1}{3}} + \left (-\frac {c}{d}\right )^{\frac {2}{3}}\right )}{6 \, {\left (b c^{2} - a c d\right )}} \] Input:

integrate(1/(b*x^3+a)/(d*x^3+c),x, algorithm="giac")
 

Output:

-1/3*b*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/(a*b*c - a^2*d) + 1/3*d*(-c 
/d)^(1/3)*log(abs(x - (-c/d)^(1/3)))/(b*c^2 - a*c*d) + (-a*b^2)^(1/3)*arct 
an(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(sqrt(3)*a*b*c - sqrt(3) 
*a^2*d) - (-c*d^2)^(1/3)*arctan(1/3*sqrt(3)*(2*x + (-c/d)^(1/3))/(-c/d)^(1 
/3))/(sqrt(3)*b*c^2 - sqrt(3)*a*c*d) + 1/6*(-a*b^2)^(1/3)*log(x^2 + x*(-a/ 
b)^(1/3) + (-a/b)^(2/3))/(a*b*c - a^2*d) - 1/6*(-c*d^2)^(1/3)*log(x^2 + x* 
(-c/d)^(1/3) + (-c/d)^(2/3))/(b*c^2 - a*c*d)
 

Mupad [B] (verification not implemented)

Time = 7.84 (sec) , antiderivative size = 1364, normalized size of antiderivative = 4.74 \[ \int \frac {1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx=\text {Too large to display} \] Input:

int(1/((a + b*x^3)*(c + d*x^3)),x)
 

Output:

log(((-b^2/(a^2*(a*d - b*c)^3))^(1/3)*(9*a^2*b^4*d^6 + 9*b^6*c^2*d^4 - 18* 
a*b^5*c*d^5 - 9*b^3*d^3*(x + a*c*(-b^2/(a^2*(a*d - b*c)^3))^(1/3))*(a*d + 
b*c)*(a*d - b*c)^4*(-b^2/(a^2*(a*d - b*c)^3))^(2/3)))/3 - 6*b^5*d^5*x)*(-b 
^2/(27*a^5*d^3 - 27*a^2*b^3*c^3 + 81*a^3*b^2*c^2*d - 81*a^4*b*c*d^2))^(1/3 
) + log(((d^2/(c^2*(a*d - b*c)^3))^(1/3)*(9*a^2*b^4*d^6 + 9*b^6*c^2*d^4 - 
18*a*b^5*c*d^5 - 9*b^3*d^3*(x + a*c*(d^2/(c^2*(a*d - b*c)^3))^(1/3))*(a*d 
+ b*c)*(a*d - b*c)^4*(d^2/(c^2*(a*d - b*c)^3))^(2/3)))/3 - 6*b^5*d^5*x)*(- 
d^2/(27*b^3*c^5 - 27*a^3*c^2*d^3 + 81*a^2*b*c^3*d^2 - 81*a*b^2*c^4*d))^(1/ 
3) + (log(6*b^5*d^5*x + ((3^(1/2)*1i - 1)*(-b^2/(a^2*(a*d - b*c)^3))^(1/3) 
*(((3^(1/2)*1i - 1)^2*(81*b^3*d^3*x*(a*d + b*c)*(a*d - b*c)^4 + (81*a*b^3* 
c*d^3*(3^(1/2)*1i - 1)*(a*d + b*c)*(a*d - b*c)^4*(-b^2/(a^2*(a*d - b*c)^3) 
)^(1/3))/2)*(-b^2/(a^2*(a*d - b*c)^3))^(2/3))/36 - 9*a^2*b^4*d^6 - 9*b^6*c 
^2*d^4 + 18*a*b^5*c*d^5))/6)*(-b^2/(27*a^5*d^3 - 27*a^2*b^3*c^3 + 81*a^3*b 
^2*c^2*d - 81*a^4*b*c*d^2))^(1/3)*(3^(1/2)*1i - 1))/2 - (log(6*b^5*d^5*x - 
 ((3^(1/2)*1i + 1)*(-b^2/(a^2*(a*d - b*c)^3))^(1/3)*(((3^(1/2)*1i + 1)^2*( 
81*b^3*d^3*x*(a*d + b*c)*(a*d - b*c)^4 - (81*a*b^3*c*d^3*(3^(1/2)*1i + 1)* 
(a*d + b*c)*(a*d - b*c)^4*(-b^2/(a^2*(a*d - b*c)^3))^(1/3))/2)*(-b^2/(a^2* 
(a*d - b*c)^3))^(2/3))/36 - 9*a^2*b^4*d^6 - 9*b^6*c^2*d^4 + 18*a*b^5*c*d^5 
))/6)*(-b^2/(27*a^5*d^3 - 27*a^2*b^3*c^3 + 81*a^3*b^2*c^2*d - 81*a^4*b*c*d 
^2))^(1/3)*(3^(1/2)*1i + 1))/2 + (log(6*b^5*d^5*x + ((3^(1/2)*1i - 1)*(...
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 188, normalized size of antiderivative = 0.65 \[ \int \frac {1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx=\frac {2 d^{\frac {1}{3}} a^{\frac {1}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) b c -2 c^{\frac {1}{3}} b^{\frac {1}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {c^{\frac {1}{3}}-2 d^{\frac {1}{3}} x}{c^{\frac {1}{3}} \sqrt {3}}\right ) a d +d^{\frac {1}{3}} a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) b c -2 d^{\frac {1}{3}} a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) b c -c^{\frac {1}{3}} b^{\frac {1}{3}} \mathrm {log}\left (c^{\frac {2}{3}}-d^{\frac {1}{3}} c^{\frac {1}{3}} x +d^{\frac {2}{3}} x^{2}\right ) a d +2 c^{\frac {1}{3}} b^{\frac {1}{3}} \mathrm {log}\left (c^{\frac {1}{3}}+d^{\frac {1}{3}} x \right ) a d}{6 d^{\frac {1}{3}} b^{\frac {1}{3}} a c \left (a d -b c \right )} \] Input:

int(1/(b*x^3+a)/(d*x^3+c),x)
 

Output:

(2*d**(1/3)*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt 
(3)))*b*c - 2*c**(1/3)*b**(1/3)*sqrt(3)*atan((c**(1/3) - 2*d**(1/3)*x)/(c* 
*(1/3)*sqrt(3)))*a*d + d**(1/3)*a**(1/3)*log(a**(2/3) - b**(1/3)*a**(1/3)* 
x + b**(2/3)*x**2)*b*c - 2*d**(1/3)*a**(1/3)*log(a**(1/3) + b**(1/3)*x)*b* 
c - c**(1/3)*b**(1/3)*log(c**(2/3) - d**(1/3)*c**(1/3)*x + d**(2/3)*x**2)* 
a*d + 2*c**(1/3)*b**(1/3)*log(c**(1/3) + d**(1/3)*x)*a*d)/(6*d**(1/3)*b**( 
1/3)*a*c*(a*d - b*c))