\(\int \frac {\sqrt {c+d x^3}}{x^8 (8 c-d x^3)} \, dx\) [469]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 678 \[ \int \frac {\sqrt {c+d x^3}}{x^8 \left (8 c-d x^3\right )} \, dx=-\frac {\sqrt {c+d x^3}}{56 c x^7}-\frac {19 d \sqrt {c+d x^3}}{1792 c^2 x^4}+\frac {d^2 \sqrt {c+d x^3}}{112 c^3 x}-\frac {d^{7/3} \sqrt {c+d x^3}}{112 c^3 \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}-\frac {\sqrt {3} d^{7/3} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{1024 c^{17/6}}+\frac {d^{7/3} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{1024 c^{17/6}}-\frac {d^{7/3} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{1024 c^{17/6}}+\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} d^{7/3} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right )|-7-4 \sqrt {3}\right )}{224 c^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {d^{7/3} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right ),-7-4 \sqrt {3}\right )}{56 \sqrt {2} \sqrt [4]{3} c^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}} \] Output:

-1/56*(d*x^3+c)^(1/2)/c/x^7-19/1792*d*(d*x^3+c)^(1/2)/c^2/x^4+1/112*d^2*(d 
*x^3+c)^(1/2)/c^3/x-1/112*d^(7/3)*(d*x^3+c)^(1/2)/c^3/((1+3^(1/2))*c^(1/3) 
+d^(1/3)*x)-1/1024*3^(1/2)*d^(7/3)*arctan(3^(1/2)*c^(1/6)*(c^(1/3)+d^(1/3) 
*x)/(d*x^3+c)^(1/2))/c^(17/6)+1/1024*d^(7/3)*arctanh(1/3*(c^(1/3)+d^(1/3)* 
x)^2/c^(1/6)/(d*x^3+c)^(1/2))/c^(17/6)-1/1024*d^(7/3)*arctanh(1/3*(d*x^3+c 
)^(1/2)/c^(1/2))/c^(17/6)+1/224*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*d^(7/3)* 
(c^(1/3)+d^(1/3)*x)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))* 
c^(1/3)+d^(1/3)*x)^2)^(1/2)*EllipticE(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+ 
3^(1/2))*c^(1/3)+d^(1/3)*x),I*3^(1/2)+2*I)/c^(8/3)/(c^(1/3)*(c^(1/3)+d^(1/ 
3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^(1/2)-1/336*d^(7/ 
3)*(c^(1/3)+d^(1/3)*x)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2 
))*c^(1/3)+d^(1/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/( 
(1+3^(1/2))*c^(1/3)+d^(1/3)*x),I*3^(1/2)+2*I)*2^(1/2)*3^(3/4)/c^(8/3)/(c^( 
1/3)*(c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c 
)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.13 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.24 \[ \int \frac {\sqrt {c+d x^3}}{x^8 \left (8 c-d x^3\right )} \, dx=\frac {-160 c \left (32 c^3+51 c^2 d x^3+3 c d^2 x^6-16 d^3 x^9\right )-325 c d^3 x^9 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )+32 d^4 x^{12} \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{286720 c^4 x^7 \sqrt {c+d x^3}} \] Input:

Integrate[Sqrt[c + d*x^3]/(x^8*(8*c - d*x^3)),x]
 

Output:

(-160*c*(32*c^3 + 51*c^2*d*x^3 + 3*c*d^2*x^6 - 16*d^3*x^9) - 325*c*d^3*x^9 
*Sqrt[1 + (d*x^3)/c]*AppellF1[2/3, 1/2, 1, 5/3, -((d*x^3)/c), (d*x^3)/(8*c 
)] + 32*d^4*x^12*Sqrt[1 + (d*x^3)/c]*AppellF1[5/3, 1/2, 1, 8/3, -((d*x^3)/ 
c), (d*x^3)/(8*c)])/(286720*c^4*x^7*Sqrt[c + d*x^3])
 

Rubi [A] (verified)

Time = 1.95 (sec) , antiderivative size = 687, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {975, 27, 1053, 27, 1053, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c+d x^3}}{x^8 \left (8 c-d x^3\right )} \, dx\)

\(\Big \downarrow \) 975

\(\displaystyle \frac {\int \frac {d \left (11 d x^3+38 c\right )}{2 x^5 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{56 c}-\frac {\sqrt {c+d x^3}}{56 c x^7}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d \int \frac {11 d x^3+38 c}{x^5 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{112 c}-\frac {\sqrt {c+d x^3}}{56 c x^7}\)

\(\Big \downarrow \) 1053

\(\displaystyle \frac {d \left (-\frac {\int \frac {c d \left (256 c-95 d x^3\right )}{x^2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{32 c^2}-\frac {19 \sqrt {c+d x^3}}{16 c x^4}\right )}{112 c}-\frac {\sqrt {c+d x^3}}{56 c x^7}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d \left (-\frac {d \int \frac {256 c-95 d x^3}{x^2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{32 c}-\frac {19 \sqrt {c+d x^3}}{16 c x^4}\right )}{112 c}-\frac {\sqrt {c+d x^3}}{56 c x^7}\)

\(\Big \downarrow \) 1053

\(\displaystyle \frac {d \left (-\frac {d \left (-\frac {\int -\frac {8 c d x \left (65 c-16 d x^3\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{8 c^2}-\frac {32 \sqrt {c+d x^3}}{c x}\right )}{32 c}-\frac {19 \sqrt {c+d x^3}}{16 c x^4}\right )}{112 c}-\frac {\sqrt {c+d x^3}}{56 c x^7}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d \left (-\frac {d \left (\frac {d \int \frac {x \left (65 c-16 d x^3\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{c}-\frac {32 \sqrt {c+d x^3}}{c x}\right )}{32 c}-\frac {19 \sqrt {c+d x^3}}{16 c x^4}\right )}{112 c}-\frac {\sqrt {c+d x^3}}{56 c x^7}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {d \left (-\frac {d \left (\frac {d \int \left (\frac {16 x}{\sqrt {d x^3+c}}-\frac {63 c x}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}\right )dx}{c}-\frac {32 \sqrt {c+d x^3}}{c x}\right )}{32 c}-\frac {19 \sqrt {c+d x^3}}{16 c x^4}\right )}{112 c}-\frac {\sqrt {c+d x^3}}{56 c x^7}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {d \left (-\frac {d \left (\frac {d \left (\frac {32 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {16 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt {3}\right )}{d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {7 \sqrt {3} \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{2 d^{2/3}}-\frac {7 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{2 d^{2/3}}+\frac {7 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{2 d^{2/3}}+\frac {32 \sqrt {c+d x^3}}{d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}\right )}{c}-\frac {32 \sqrt {c+d x^3}}{c x}\right )}{32 c}-\frac {19 \sqrt {c+d x^3}}{16 c x^4}\right )}{112 c}-\frac {\sqrt {c+d x^3}}{56 c x^7}\)

Input:

Int[Sqrt[c + d*x^3]/(x^8*(8*c - d*x^3)),x]
 

Output:

-1/56*Sqrt[c + d*x^3]/(c*x^7) + (d*((-19*Sqrt[c + d*x^3])/(16*c*x^4) - (d* 
((-32*Sqrt[c + d*x^3])/(c*x) + (d*((32*Sqrt[c + d*x^3])/(d^(2/3)*((1 + Sqr 
t[3])*c^(1/3) + d^(1/3)*x)) + (7*Sqrt[3]*c^(1/6)*ArcTan[(Sqrt[3]*c^(1/6)*( 
c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]])/(2*d^(2/3)) - (7*c^(1/6)*ArcTanh[( 
c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])])/(2*d^(2/3)) + (7*c^(1 
/6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(2*d^(2/3)) - (16*3^(1/4)*Sqrt[2 
 - Sqrt[3]]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)* 
x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticE[ArcSin[( 
(1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], - 
7 - 4*Sqrt[3]])/(d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3 
])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3]) + (32*Sqrt[2]*c^(1/3)*(c^(1/3) 
 + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[ 
3])*c^(1/3) + d^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1 
/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*d^( 
2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/3) 
*x)^2]*Sqrt[c + d*x^3])))/c))/(32*c)))/(112*c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 975
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_) 
)^(q_), x_Symbol] :> Simp[(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/ 
(a*e*(m + 1))), x] - Simp[1/(a*e^n*(m + 1))   Int[(e*x)^(m + n)*(a + b*x^n) 
^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m 
 + 1) + b*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && 
 NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] && IntBinomi 
alQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1053
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_ 
))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b 
*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^n*( 
m + 1))   Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) 
- e*(b*c + a*d)*(m + n + 1) - e*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2 
) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 
0] && LtQ[m, -1]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 3.35 (sec) , antiderivative size = 895, normalized size of antiderivative = 1.32

method result size
risch \(\text {Expression too large to display}\) \(895\)
elliptic \(\text {Expression too large to display}\) \(906\)
default \(\text {Expression too large to display}\) \(2280\)

Input:

int((d*x^3+c)^(1/2)/x^8/(-d*x^3+8*c),x,method=_RETURNVERBOSE)
 

Output:

-1/1792*(d*x^3+c)^(1/2)*(-16*d^2*x^6+19*c*d*x^3+32*c^2)/c^3/x^7-1/3584*d^3 
/c^3*(-32/3*I*3^(1/2)/d*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^ 
(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^( 
1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x 
+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^( 
1/3))^(1/2)/(d*x^3+c)^(1/2)*((-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^ 
2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d 
*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/ 
3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2))+1/d*(-c* 
d^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/ 
d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1 
/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)))+7/3*I/ 
d^3*2^(1/2)*sum(1/_alpha*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c* 
d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3) 
)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*( 
I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^ 
(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha 
^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*( 
x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^ 
(1/3))^(1/2),-1/18/d*(2*I*(-c*d^2)^(1/3)*_alpha^2*3^(1/2)*d-I*(-c*d^2)^...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2436 vs. \(2 (482) = 964\).

Time = 2.45 (sec) , antiderivative size = 2436, normalized size of antiderivative = 3.59 \[ \int \frac {\sqrt {c+d x^3}}{x^8 \left (8 c-d x^3\right )} \, dx=\text {Too large to display} \] Input:

integrate((d*x^3+c)^(1/2)/x^8/(-d*x^3+8*c),x, algorithm="fricas")
 

Output:

1/86016*(14*c^3*x^7*(d^14/c^17)^(1/6)*log((d^14*x^9 + 318*c*d^13*x^6 + 120 
0*c^2*d^12*x^3 + 640*c^3*d^11 + 18*(5*c^12*d^4*x^7 + 64*c^13*d^3*x^4 + 32* 
c^14*d^2*x)*(d^14/c^17)^(2/3) + 6*sqrt(d*x^3 + c)*(6*(5*c^15*d*x^5 + 32*c^ 
16*x^2)*(d^14/c^17)^(5/6) + (7*c^9*d^6*x^6 + 152*c^10*d^5*x^3 + 64*c^11*d^ 
4)*sqrt(d^14/c^17) + (c^3*d^11*x^7 + 80*c^4*d^10*x^4 + 160*c^5*d^9*x)*(d^1 
4/c^17)^(1/6)) + 18*(c^6*d^9*x^8 + 38*c^7*d^8*x^5 + 64*c^8*d^7*x^2)*(d^14/ 
c^17)^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 14*c^3* 
x^7*(d^14/c^17)^(1/6)*log((d^14*x^9 + 318*c*d^13*x^6 + 1200*c^2*d^12*x^3 + 
 640*c^3*d^11 + 18*(5*c^12*d^4*x^7 + 64*c^13*d^3*x^4 + 32*c^14*d^2*x)*(d^1 
4/c^17)^(2/3) - 6*sqrt(d*x^3 + c)*(6*(5*c^15*d*x^5 + 32*c^16*x^2)*(d^14/c^ 
17)^(5/6) + (7*c^9*d^6*x^6 + 152*c^10*d^5*x^3 + 64*c^11*d^4)*sqrt(d^14/c^1 
7) + (c^3*d^11*x^7 + 80*c^4*d^10*x^4 + 160*c^5*d^9*x)*(d^14/c^17)^(1/6)) + 
 18*(c^6*d^9*x^8 + 38*c^7*d^8*x^5 + 64*c^8*d^7*x^2)*(d^14/c^17)^(1/3))/(d^ 
3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) + 768*d^(5/2)*x^7*weierst 
rassZeta(0, -4*c/d, weierstrassPInverse(0, -4*c/d, x)) + 7*(sqrt(-3)*c^3*x 
^7 + c^3*x^7)*(d^14/c^17)^(1/6)*log((d^14*x^9 + 318*c*d^13*x^6 + 1200*c^2* 
d^12*x^3 + 640*c^3*d^11 - 9*(5*c^12*d^4*x^7 + 64*c^13*d^3*x^4 + 32*c^14*d^ 
2*x + sqrt(-3)*(5*c^12*d^4*x^7 + 64*c^13*d^3*x^4 + 32*c^14*d^2*x))*(d^14/c 
^17)^(2/3) + 3*sqrt(d*x^3 + c)*(6*(5*c^15*d*x^5 + 32*c^16*x^2 - sqrt(-3)*( 
5*c^15*d*x^5 + 32*c^16*x^2))*(d^14/c^17)^(5/6) - 2*(7*c^9*d^6*x^6 + 152...
 

Sympy [F]

\[ \int \frac {\sqrt {c+d x^3}}{x^8 \left (8 c-d x^3\right )} \, dx=- \int \frac {\sqrt {c + d x^{3}}}{- 8 c x^{8} + d x^{11}}\, dx \] Input:

integrate((d*x**3+c)**(1/2)/x**8/(-d*x**3+8*c),x)
 

Output:

-Integral(sqrt(c + d*x**3)/(-8*c*x**8 + d*x**11), x)
 

Maxima [F]

\[ \int \frac {\sqrt {c+d x^3}}{x^8 \left (8 c-d x^3\right )} \, dx=\int { -\frac {\sqrt {d x^{3} + c}}{{\left (d x^{3} - 8 \, c\right )} x^{8}} \,d x } \] Input:

integrate((d*x^3+c)^(1/2)/x^8/(-d*x^3+8*c),x, algorithm="maxima")
 

Output:

-integrate(sqrt(d*x^3 + c)/((d*x^3 - 8*c)*x^8), x)
 

Giac [F]

\[ \int \frac {\sqrt {c+d x^3}}{x^8 \left (8 c-d x^3\right )} \, dx=\int { -\frac {\sqrt {d x^{3} + c}}{{\left (d x^{3} - 8 \, c\right )} x^{8}} \,d x } \] Input:

integrate((d*x^3+c)^(1/2)/x^8/(-d*x^3+8*c),x, algorithm="giac")
 

Output:

integrate(-sqrt(d*x^3 + c)/((d*x^3 - 8*c)*x^8), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+d x^3}}{x^8 \left (8 c-d x^3\right )} \, dx=\int \frac {\sqrt {d\,x^3+c}}{x^8\,\left (8\,c-d\,x^3\right )} \,d x \] Input:

int((c + d*x^3)^(1/2)/(x^8*(8*c - d*x^3)),x)
 

Output:

int((c + d*x^3)^(1/2)/(x^8*(8*c - d*x^3)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {c+d x^3}}{x^8 \left (8 c-d x^3\right )} \, dx=\int \frac {\sqrt {d \,x^{3}+c}}{-d \,x^{11}+8 c \,x^{8}}d x \] Input:

int((d*x^3+c)^(1/2)/x^8/(-d*x^3+8*c),x)
 

Output:

int(sqrt(c + d*x**3)/(8*c*x**8 - d*x**11),x)