\(\int \frac {x^7}{(8 c-d x^3) \sqrt {c+d x^3}} \, dx\) [490]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 630 \[ \int \frac {x^7}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=-\frac {2 x^2 \sqrt {c+d x^3}}{7 d^2}-\frac {104 c \sqrt {c+d x^3}}{7 d^{8/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}-\frac {32 c^{7/6} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{3 \sqrt {3} d^{8/3}}+\frac {32 c^{7/6} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{9 d^{8/3}}-\frac {32 c^{7/6} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{9 d^{8/3}}+\frac {52 \sqrt [4]{3} \sqrt {2-\sqrt {3}} c^{4/3} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right )|-7-4 \sqrt {3}\right )}{7 d^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {104 \sqrt {2} c^{4/3} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right ),-7-4 \sqrt {3}\right )}{7 \sqrt [4]{3} d^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}} \] Output:

-2/7*x^2*(d*x^3+c)^(1/2)/d^2-104/7*c*(d*x^3+c)^(1/2)/d^(8/3)/((1+3^(1/2))* 
c^(1/3)+d^(1/3)*x)-32/9*c^(7/6)*arctan(3^(1/2)*c^(1/6)*(c^(1/3)+d^(1/3)*x) 
/(d*x^3+c)^(1/2))*3^(1/2)/d^(8/3)+32/9*c^(7/6)*arctanh(1/3*(c^(1/3)+d^(1/3 
)*x)^2/c^(1/6)/(d*x^3+c)^(1/2))/d^(8/3)-32/9*c^(7/6)*arctanh(1/3*(d*x^3+c) 
^(1/2)/c^(1/2))/d^(8/3)+52/7*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*c^(4/3)*(c^ 
(1/3)+d^(1/3)*x)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^( 
1/3)+d^(1/3)*x)^2)^(1/2)*EllipticE(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^( 
1/2))*c^(1/3)+d^(1/3)*x),I*3^(1/2)+2*I)/d^(8/3)/(c^(1/3)*(c^(1/3)+d^(1/3)* 
x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^(1/2)-104/21*2^(1/2) 
*c^(4/3)*(c^(1/3)+d^(1/3)*x)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+ 
3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*c^(1/3)+d^(1/3 
)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/d^(8/3)/(c^(1/ 
3)*(c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^ 
(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.09 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.21 \[ \int \frac {x^7}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\frac {x^2 \left (-20 \left (c+d x^3\right )+20 c \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )+13 d x^3 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )\right )}{70 d^2 \sqrt {c+d x^3}} \] Input:

Integrate[x^7/((8*c - d*x^3)*Sqrt[c + d*x^3]),x]
 

Output:

(x^2*(-20*(c + d*x^3) + 20*c*Sqrt[1 + (d*x^3)/c]*AppellF1[2/3, 1/2, 1, 5/3 
, -((d*x^3)/c), (d*x^3)/(8*c)] + 13*d*x^3*Sqrt[1 + (d*x^3)/c]*AppellF1[5/3 
, 1/2, 1, 8/3, -((d*x^3)/c), (d*x^3)/(8*c)]))/(70*d^2*Sqrt[c + d*x^3])
 

Rubi [A] (verified)

Time = 1.60 (sec) , antiderivative size = 632, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {979, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^7}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 979

\(\displaystyle \frac {2 \int \frac {2 c x \left (13 d x^3+8 c\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{7 d^2}-\frac {2 x^2 \sqrt {c+d x^3}}{7 d^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4 c \int \frac {x \left (13 d x^3+8 c\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{7 d^2}-\frac {2 x^2 \sqrt {c+d x^3}}{7 d^2}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {4 c \int \left (\frac {112 c x}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}-\frac {13 x}{\sqrt {d x^3+c}}\right )dx}{7 d^2}-\frac {2 x^2 \sqrt {c+d x^3}}{7 d^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {4 c \left (-\frac {26 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {13 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt {3}\right )}{d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {56 \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{3 \sqrt {3} d^{2/3}}+\frac {56 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{9 d^{2/3}}-\frac {56 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{9 d^{2/3}}-\frac {26 \sqrt {c+d x^3}}{d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}\right )}{7 d^2}-\frac {2 x^2 \sqrt {c+d x^3}}{7 d^2}\)

Input:

Int[x^7/((8*c - d*x^3)*Sqrt[c + d*x^3]),x]
 

Output:

(-2*x^2*Sqrt[c + d*x^3])/(7*d^2) + (4*c*((-26*Sqrt[c + d*x^3])/(d^(2/3)*(( 
1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)) - (56*c^(1/6)*ArcTan[(Sqrt[3]*c^(1/6)*( 
c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]])/(3*Sqrt[3]*d^(2/3)) + (56*c^(1/6)* 
ArcTanh[(c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])])/(9*d^(2/3)) 
- (56*c^(1/6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(9*d^(2/3)) + (13*3^(1 
/4)*Sqrt[2 - Sqrt[3]]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3 
)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Elliptic 
E[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1 
/3)*x)], -7 - 4*Sqrt[3]])/(d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/(( 
1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3]) - (26*Sqrt[2]*c^(1/3 
)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/( 
(1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*c^(1 
/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(3 
^(1/4)*d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) 
 + d^(1/3)*x)^2]*Sqrt[c + d*x^3])))/(7*d^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 979
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[e^(2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 
 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q) + 1))), x] - Simp[e^(2*n)/(b*d 
*(m + n*(p + q) + 1))   Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Sim 
p[a*c*(m - 2*n + 1) + (a*d*(m + n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x 
^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && I 
GtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x 
]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.29 (sec) , antiderivative size = 867, normalized size of antiderivative = 1.38

method result size
elliptic \(\text {Expression too large to display}\) \(867\)
risch \(\text {Expression too large to display}\) \(872\)
default \(\text {Expression too large to display}\) \(1308\)

Input:

int(x^7/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/7*x^2*(d*x^3+c)^(1/2)/d^2+104/21*I/d^3*c*3^(1/2)*(-c*d^2)^(1/3)*(I*(x+1 
/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/ 
3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*( 
-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2) 
^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*((-3/2/d*(-c*d^2)^ 
(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/d*(- 
c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/ 
2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c* 
d^2)^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*( 
-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1 
/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c 
*d^2)^(1/3)))^(1/2)))-64/27*I*c/d^5*2^(1/2)*sum(1/_alpha*(-c*d^2)^(1/3)*(1 
/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3) 
)^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1 
/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/ 
(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I 
*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2 
/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c 
*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),-1/18/d*(2*I*(-c*d^2)^(1/3)*_ 
alpha^2*3^(1/2)*d-I*(-c*d^2)^(2/3)*_alpha*3^(1/2)+I*3^(1/2)*c*d-3*(-c*d...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2428 vs. \(2 (442) = 884\).

Time = 10.19 (sec) , antiderivative size = 2428, normalized size of antiderivative = 3.85 \[ \int \frac {x^7}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\text {Too large to display} \] Input:

integrate(x^7/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")
 

Output:

2/189*(56*d^3*(c^7/d^16)^(1/6)*log(33554432/3*((d^16*x^9 + 318*c*d^15*x^6 
+ 1200*c^2*d^14*x^3 + 640*c^3*d^13)*(c^7/d^16)^(5/6) + 6*(c^6*d^2*x^7 + 80 
*c^7*d*x^4 + 160*c^8*x + 6*(5*c^2*d^12*x^5 + 32*c^3*d^11*x^2)*(c^7/d^16)^( 
2/3) + (7*c^4*d^7*x^6 + 152*c^5*d^6*x^3 + 64*c^6*d^5)*(c^7/d^16)^(1/3))*sq 
rt(d*x^3 + c) + 18*(5*c^3*d^10*x^7 + 64*c^4*d^9*x^4 + 32*c^5*d^8*x)*sqrt(c 
^7/d^16) + 18*(c^5*d^5*x^8 + 38*c^6*d^4*x^5 + 64*c^7*d^3*x^2)*(c^7/d^16)^( 
1/6))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 56*d^3*(c^7/d^ 
16)^(1/6)*log(-33554432/3*((d^16*x^9 + 318*c*d^15*x^6 + 1200*c^2*d^14*x^3 
+ 640*c^3*d^13)*(c^7/d^16)^(5/6) - 6*(c^6*d^2*x^7 + 80*c^7*d*x^4 + 160*c^8 
*x + 6*(5*c^2*d^12*x^5 + 32*c^3*d^11*x^2)*(c^7/d^16)^(2/3) + (7*c^4*d^7*x^ 
6 + 152*c^5*d^6*x^3 + 64*c^6*d^5)*(c^7/d^16)^(1/3))*sqrt(d*x^3 + c) + 18*( 
5*c^3*d^10*x^7 + 64*c^4*d^9*x^4 + 32*c^5*d^8*x)*sqrt(c^7/d^16) + 18*(c^5*d 
^5*x^8 + 38*c^6*d^4*x^5 + 64*c^7*d^3*x^2)*(c^7/d^16)^(1/6))/(d^3*x^9 - 24* 
c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 27*sqrt(d*x^3 + c)*d*x^2 + 1404*c* 
sqrt(d)*weierstrassZeta(0, -4*c/d, weierstrassPInverse(0, -4*c/d, x)) - 28 
*(sqrt(-3)*d^3 - d^3)*(c^7/d^16)^(1/6)*log(33554432/3*((d^16*x^9 + 318*c*d 
^15*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13 + sqrt(-3)*(d^16*x^9 + 318*c*d^ 
15*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13))*(c^7/d^16)^(5/6) + 6*(2*c^6*d^ 
2*x^7 + 160*c^7*d*x^4 + 320*c^8*x - 6*(5*c^2*d^12*x^5 + 32*c^3*d^11*x^2 - 
sqrt(-3)*(5*c^2*d^12*x^5 + 32*c^3*d^11*x^2))*(c^7/d^16)^(2/3) - (7*c^4*...
 

Sympy [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=- \int \frac {x^{7}}{- 8 c \sqrt {c + d x^{3}} + d x^{3} \sqrt {c + d x^{3}}}\, dx \] Input:

integrate(x**7/(-d*x**3+8*c)/(d*x**3+c)**(1/2),x)
 

Output:

-Integral(x**7/(-8*c*sqrt(c + d*x**3) + d*x**3*sqrt(c + d*x**3)), x)
 

Maxima [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int { -\frac {x^{7}}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}} \,d x } \] Input:

integrate(x^7/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")
 

Output:

-integrate(x^7/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)), x)
 

Giac [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int { -\frac {x^{7}}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}} \,d x } \] Input:

integrate(x^7/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(-x^7/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^7}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int \frac {x^7}{\sqrt {d\,x^3+c}\,\left (8\,c-d\,x^3\right )} \,d x \] Input:

int(x^7/((c + d*x^3)^(1/2)*(8*c - d*x^3)),x)
 

Output:

int(x^7/((c + d*x^3)^(1/2)*(8*c - d*x^3)), x)
 

Reduce [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\frac {-\frac {2 \sqrt {d \,x^{3}+c}\, x^{2}}{7}+\frac {52 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{4}}{-d^{2} x^{6}+7 c d \,x^{3}+8 c^{2}}d x \right ) c d}{7}+\frac {32 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{-d^{2} x^{6}+7 c d \,x^{3}+8 c^{2}}d x \right ) c^{2}}{7}}{d^{2}} \] Input:

int(x^7/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x)
 

Output:

(2*( - sqrt(c + d*x**3)*x**2 + 26*int((sqrt(c + d*x**3)*x**4)/(8*c**2 + 7* 
c*d*x**3 - d**2*x**6),x)*c*d + 16*int((sqrt(c + d*x**3)*x)/(8*c**2 + 7*c*d 
*x**3 - d**2*x**6),x)*c**2))/(7*d**2)