\(\int \frac {x^3}{(8 c-d x^3) \sqrt {c+d x^3}} \, dx\) [496]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 66 \[ \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\frac {x^4 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},1,\frac {1}{2},\frac {7}{3},\frac {d x^3}{8 c},-\frac {d x^3}{c}\right )}{32 c \sqrt {c+d x^3}} \] Output:

1/32*x^4*(1+d*x^3/c)^(1/2)*AppellF1(4/3,1/2,1,7/3,-d*x^3/c,1/8*d*x^3/c)/c/ 
(d*x^3+c)^(1/2)
 

Mathematica [A] (verified)

Time = 10.05 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.02 \[ \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\frac {x^4 \sqrt {\frac {c+d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},1,\frac {7}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{32 c \sqrt {c+d x^3}} \] Input:

Integrate[x^3/((8*c - d*x^3)*Sqrt[c + d*x^3]),x]
 

Output:

(x^4*Sqrt[(c + d*x^3)/c]*AppellF1[4/3, 1/2, 1, 7/3, -((d*x^3)/c), (d*x^3)/ 
(8*c)])/(32*c*Sqrt[c + d*x^3])
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \frac {\sqrt {\frac {d x^3}{c}+1} \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {\frac {d x^3}{c}+1}}dx}{\sqrt {c+d x^3}}\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {x^4 \sqrt {\frac {d x^3}{c}+1} \operatorname {AppellF1}\left (\frac {4}{3},1,\frac {1}{2},\frac {7}{3},\frac {d x^3}{8 c},-\frac {d x^3}{c}\right )}{32 c \sqrt {c+d x^3}}\)

Input:

Int[x^3/((8*c - d*x^3)*Sqrt[c + d*x^3]),x]
 

Output:

(x^4*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1, 1/2, 7/3, (d*x^3)/(8*c), -((d*x^ 
3)/c)])/(32*c*Sqrt[c + d*x^3])
 

Defintions of rubi rules used

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 1.16 (sec) , antiderivative size = 696, normalized size of antiderivative = 10.55

method result size
default \(\frac {2 i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}}{-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{3 d^{2} \sqrt {d \,x^{3}+c}}-\frac {8 i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (d \,\textit {\_Z}^{3}-8 c \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \operatorname {EllipticPi}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}\, d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d}{18 d c}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {d \,x^{3}+c}}\right )}{27 d^{4}}\) \(696\)
elliptic \(\frac {2 i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}}{-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{3 d^{2} \sqrt {d \,x^{3}+c}}-\frac {8 i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (d \,\textit {\_Z}^{3}-8 c \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \operatorname {EllipticPi}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}\, d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d}{18 d c}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {d \,x^{3}+c}}\right )}{27 d^{4}}\) \(696\)

Input:

int(x^3/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2/3*I/d^2*3^(1/2)*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/ 
d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/ 
(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d 
*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^ 
(1/2)/(d*x^3+c)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2 
*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d* 
(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/ 
2))-8/27*I/d^4*2^(1/2)*sum(1/_alpha^2*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I 
*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*( 
-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I 
*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/ 
2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^( 
2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3 
*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2 
)*d/(-c*d^2)^(1/3))^(1/2),-1/18/d*(2*I*(-c*d^2)^(1/3)*_alpha^2*3^(1/2)*d-I 
*(-c*d^2)^(2/3)*_alpha*3^(1/2)+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3*c*d 
)/c,(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c 
*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2284 vs. \(2 (52) = 104\).

Time = 0.38 (sec) , antiderivative size = 2284, normalized size of antiderivative = 34.61 \[ \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\text {Too large to display} \] Input:

integrate(x^3/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")
 

Output:

1/54*(2*d^2*(1/(c*d^8))^(1/6)*log((d^3*x^9 + 318*c*d^2*x^6 + 1200*c^2*d*x^ 
3 + 640*c^3 + 18*(c*d^8*x^8 + 38*c^2*d^7*x^5 + 64*c^3*d^6*x^2)*(1/(c*d^8)) 
^(2/3) + 6*sqrt(d*x^3 + c)*((c*d^9*x^7 + 80*c^2*d^8*x^4 + 160*c^3*d^7*x)*( 
1/(c*d^8))^(5/6) + (7*c*d^6*x^6 + 152*c^2*d^5*x^3 + 64*c^3*d^4)*sqrt(1/(c* 
d^8)) + 6*(5*c*d^3*x^5 + 32*c^2*d^2*x^2)*(1/(c*d^8))^(1/6)) + 18*(5*c*d^5* 
x^7 + 64*c^2*d^4*x^4 + 32*c^3*d^3*x)*(1/(c*d^8))^(1/3))/(d^3*x^9 - 24*c*d^ 
2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 2*d^2*(1/(c*d^8))^(1/6)*log((d^3*x^9 + 
 318*c*d^2*x^6 + 1200*c^2*d*x^3 + 640*c^3 + 18*(c*d^8*x^8 + 38*c^2*d^7*x^5 
 + 64*c^3*d^6*x^2)*(1/(c*d^8))^(2/3) - 6*sqrt(d*x^3 + c)*((c*d^9*x^7 + 80* 
c^2*d^8*x^4 + 160*c^3*d^7*x)*(1/(c*d^8))^(5/6) + (7*c*d^6*x^6 + 152*c^2*d^ 
5*x^3 + 64*c^3*d^4)*sqrt(1/(c*d^8)) + 6*(5*c*d^3*x^5 + 32*c^2*d^2*x^2)*(1/ 
(c*d^8))^(1/6)) + 18*(5*c*d^5*x^7 + 64*c^2*d^4*x^4 + 32*c^3*d^3*x)*(1/(c*d 
^8))^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) + (sqrt(-3 
)*d^2 + d^2)*(1/(c*d^8))^(1/6)*log((d^3*x^9 + 318*c*d^2*x^6 + 1200*c^2*d*x 
^3 + 640*c^3 - 9*(c*d^8*x^8 + 38*c^2*d^7*x^5 + 64*c^3*d^6*x^2 + sqrt(-3)*( 
c*d^8*x^8 + 38*c^2*d^7*x^5 + 64*c^3*d^6*x^2))*(1/(c*d^8))^(2/3) + 3*sqrt(d 
*x^3 + c)*((c*d^9*x^7 + 80*c^2*d^8*x^4 + 160*c^3*d^7*x - sqrt(-3)*(c*d^9*x 
^7 + 80*c^2*d^8*x^4 + 160*c^3*d^7*x))*(1/(c*d^8))^(5/6) - 2*(7*c*d^6*x^6 + 
 152*c^2*d^5*x^3 + 64*c^3*d^4)*sqrt(1/(c*d^8)) + 6*(5*c*d^3*x^5 + 32*c^2*d 
^2*x^2 + sqrt(-3)*(5*c*d^3*x^5 + 32*c^2*d^2*x^2))*(1/(c*d^8))^(1/6)) - ...
 

Sympy [F]

\[ \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=- \int \frac {x^{3}}{- 8 c \sqrt {c + d x^{3}} + d x^{3} \sqrt {c + d x^{3}}}\, dx \] Input:

integrate(x**3/(-d*x**3+8*c)/(d*x**3+c)**(1/2),x)
                                                                                    
                                                                                    
 

Output:

-Integral(x**3/(-8*c*sqrt(c + d*x**3) + d*x**3*sqrt(c + d*x**3)), x)
 

Maxima [F]

\[ \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int { -\frac {x^{3}}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}} \,d x } \] Input:

integrate(x^3/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")
 

Output:

-integrate(x^3/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)), x)
 

Giac [F]

\[ \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int { -\frac {x^{3}}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}} \,d x } \] Input:

integrate(x^3/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(-x^3/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int \frac {x^3}{\sqrt {d\,x^3+c}\,\left (8\,c-d\,x^3\right )} \,d x \] Input:

int(x^3/((c + d*x^3)^(1/2)*(8*c - d*x^3)),x)
 

Output:

int(x^3/((c + d*x^3)^(1/2)*(8*c - d*x^3)), x)
 

Reduce [F]

\[ \int \frac {x^3}{\left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx=\int \frac {\sqrt {d \,x^{3}+c}\, x^{3}}{-d^{2} x^{6}+7 c d \,x^{3}+8 c^{2}}d x \] Input:

int(x^3/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x)
 

Output:

int((sqrt(c + d*x**3)*x**3)/(8*c**2 + 7*c*d*x**3 - d**2*x**6),x)