\(\int \frac {x^7}{(8 c-d x^3) (c+d x^3)^{3/2}} \, dx\) [506]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 629 \[ \int \frac {x^7}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\frac {2 x^2}{27 d^2 \sqrt {c+d x^3}}-\frac {56 \sqrt {c+d x^3}}{27 d^{8/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}-\frac {32 \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{27 \sqrt {3} d^{8/3}}+\frac {32 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{81 d^{8/3}}-\frac {32 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 d^{8/3}}+\frac {28 \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right )|-7-4 \sqrt {3}\right )}{9\ 3^{3/4} d^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {56 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right ),-7-4 \sqrt {3}\right )}{27 \sqrt [4]{3} d^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}} \] Output:

2/27*x^2/d^2/(d*x^3+c)^(1/2)-56/27*(d*x^3+c)^(1/2)/d^(8/3)/((1+3^(1/2))*c^ 
(1/3)+d^(1/3)*x)-32/81*c^(1/6)*arctan(3^(1/2)*c^(1/6)*(c^(1/3)+d^(1/3)*x)/ 
(d*x^3+c)^(1/2))*3^(1/2)/d^(8/3)+32/81*c^(1/6)*arctanh(1/3*(c^(1/3)+d^(1/3 
)*x)^2/c^(1/6)/(d*x^3+c)^(1/2))/d^(8/3)-32/81*c^(1/6)*arctanh(1/3*(d*x^3+c 
)^(1/2)/c^(1/2))/d^(8/3)+28/27*(1/2*6^(1/2)-1/2*2^(1/2))*c^(1/3)*(c^(1/3)+ 
d^(1/3)*x)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^(1/3)+d 
^(1/3)*x)^2)^(1/2)*EllipticE(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^(1/2))* 
c^(1/3)+d^(1/3)*x),I*3^(1/2)+2*I)*3^(1/4)/d^(8/3)/(c^(1/3)*(c^(1/3)+d^(1/3 
)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^(1/2)-56/81*2^(1/2 
)*c^(1/3)*(c^(1/3)+d^(1/3)*x)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1 
+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*c^(1/3)+d^(1/ 
3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/d^(8/3)/(c^(1 
/3)*(c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c) 
^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 8.85 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.20 \[ \int \frac {x^7}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\frac {x^2 \left (20 c-20 c \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )+7 d x^3 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )\right )}{270 c d^2 \sqrt {c+d x^3}} \] Input:

Integrate[x^7/((8*c - d*x^3)*(c + d*x^3)^(3/2)),x]
 

Output:

(x^2*(20*c - 20*c*Sqrt[1 + (d*x^3)/c]*AppellF1[2/3, 1/2, 1, 5/3, -((d*x^3) 
/c), (d*x^3)/(8*c)] + 7*d*x^3*Sqrt[1 + (d*x^3)/c]*AppellF1[5/3, 1/2, 1, 8/ 
3, -((d*x^3)/c), (d*x^3)/(8*c)]))/(270*c*d^2*Sqrt[c + d*x^3])
 

Rubi [A] (verified)

Time = 1.63 (sec) , antiderivative size = 629, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {970, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^7}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 970

\(\displaystyle \frac {2 x^2}{27 d^2 \sqrt {c+d x^3}}-\frac {2 \int \frac {2 c x \left (8 c-7 d x^3\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{27 c d^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 x^2}{27 d^2 \sqrt {c+d x^3}}-\frac {4 \int \frac {x \left (8 c-7 d x^3\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{27 d^2}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {2 x^2}{27 d^2 \sqrt {c+d x^3}}-\frac {4 \int \left (\frac {7 x}{\sqrt {d x^3+c}}-\frac {48 c x}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}\right )dx}{27 d^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 x^2}{27 d^2 \sqrt {c+d x^3}}-\frac {4 \left (\frac {14 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {7 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt {3}\right )}{d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {8 \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{\sqrt {3} d^{2/3}}-\frac {8 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{3 d^{2/3}}+\frac {8 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{3 d^{2/3}}+\frac {14 \sqrt {c+d x^3}}{d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}\right )}{27 d^2}\)

Input:

Int[x^7/((8*c - d*x^3)*(c + d*x^3)^(3/2)),x]
 

Output:

(2*x^2)/(27*d^2*Sqrt[c + d*x^3]) - (4*((14*Sqrt[c + d*x^3])/(d^(2/3)*((1 + 
 Sqrt[3])*c^(1/3) + d^(1/3)*x)) + (8*c^(1/6)*ArcTan[(Sqrt[3]*c^(1/6)*(c^(1 
/3) + d^(1/3)*x))/Sqrt[c + d*x^3]])/(Sqrt[3]*d^(2/3)) - (8*c^(1/6)*ArcTanh 
[(c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])])/(3*d^(2/3)) + (8*c^ 
(1/6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(3*d^(2/3)) - (7*3^(1/4)*Sqrt[ 
2 - Sqrt[3]]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3) 
*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticE[ArcSin[ 
((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], 
-7 - 4*Sqrt[3]])/(d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[ 
3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3]) + (14*Sqrt[2]*c^(1/3)*(c^(1/3 
) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt 
[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^( 
1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*d^ 
(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/3 
)*x)^2]*Sqrt[c + d*x^3])))/(27*d^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 970
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[(-a)*e^(2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n) 
^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Simp[e^(2*n) 
/(b*n*(b*c - a*d)*(p + 1))   Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d 
*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^ 
n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[ 
n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, 
n, p, q, x]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.67 (sec) , antiderivative size = 869, normalized size of antiderivative = 1.38

method result size
elliptic \(\text {Expression too large to display}\) \(869\)
default \(\text {Expression too large to display}\) \(1810\)

Input:

int(x^7/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/27/d^2*x^2/((x^3+c/d)*d)^(1/2)+56/81*I/d^3*3^(1/2)*(-c*d^2)^(1/3)*(I*(x+ 
1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1 
/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d* 
(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2 
)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*((-3/2/d*(-c*d^2) 
^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/d*( 
-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1 
/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c 
*d^2)^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d* 
(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^( 
1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(- 
c*d^2)^(1/3)))^(1/2)))-64/243*I/d^5*2^(1/2)*sum(1/_alpha*(-c*d^2)^(1/3)*(1 
/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3) 
)^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1 
/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/ 
(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I 
*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2 
/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c 
*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),-1/18/d*(2*I*(-c*d^2)^(1/3)*_ 
alpha^2*3^(1/2)*d-I*(-c*d^2)^(2/3)*_alpha*3^(1/2)+I*3^(1/2)*c*d-3*(-c*d...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2384 vs. \(2 (441) = 882\).

Time = 4.52 (sec) , antiderivative size = 2384, normalized size of antiderivative = 3.79 \[ \int \frac {x^7}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(x^7/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="fricas")
 

Output:

2/243*(9*sqrt(d*x^3 + c)*d*x^2 + 252*(d*x^3 + c)*sqrt(d)*weierstrassZeta(0 
, -4*c/d, weierstrassPInverse(0, -4*c/d, x)) + 4*(d^4*x^3 + c*d^3 - sqrt(- 
3)*(d^4*x^3 + c*d^3))*(c/d^16)^(1/6)*log(33554432/3*((d^16*x^9 + 318*c*d^1 
5*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13 + sqrt(-3)*(d^16*x^9 + 318*c*d^15 
*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13))*(c/d^16)^(5/6) + 6*(2*c*d^2*x^7 
+ 160*c^2*d*x^4 + 320*c^3*x - 6*(5*c*d^12*x^5 + 32*c^2*d^11*x^2 - sqrt(-3) 
*(5*c*d^12*x^5 + 32*c^2*d^11*x^2))*(c/d^16)^(2/3) - (7*c*d^7*x^6 + 152*c^2 
*d^6*x^3 + 64*c^3*d^5 + sqrt(-3)*(7*c*d^7*x^6 + 152*c^2*d^6*x^3 + 64*c^3*d 
^5))*(c/d^16)^(1/3))*sqrt(d*x^3 + c) - 36*(5*c*d^10*x^7 + 64*c^2*d^9*x^4 + 
 32*c^3*d^8*x)*sqrt(c/d^16) + 18*(c*d^5*x^8 + 38*c^2*d^4*x^5 + 64*c^3*d^3* 
x^2 - sqrt(-3)*(c*d^5*x^8 + 38*c^2*d^4*x^5 + 64*c^3*d^3*x^2))*(c/d^16)^(1/ 
6))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 4*(d^4*x^3 + c*d 
^3 - sqrt(-3)*(d^4*x^3 + c*d^3))*(c/d^16)^(1/6)*log(-33554432/3*((d^16*x^9 
 + 318*c*d^15*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13 + sqrt(-3)*(d^16*x^9 
+ 318*c*d^15*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13))*(c/d^16)^(5/6) - 6*( 
2*c*d^2*x^7 + 160*c^2*d*x^4 + 320*c^3*x - 6*(5*c*d^12*x^5 + 32*c^2*d^11*x^ 
2 - sqrt(-3)*(5*c*d^12*x^5 + 32*c^2*d^11*x^2))*(c/d^16)^(2/3) - (7*c*d^7*x 
^6 + 152*c^2*d^6*x^3 + 64*c^3*d^5 + sqrt(-3)*(7*c*d^7*x^6 + 152*c^2*d^6*x^ 
3 + 64*c^3*d^5))*(c/d^16)^(1/3))*sqrt(d*x^3 + c) - 36*(5*c*d^10*x^7 + 64*c 
^2*d^9*x^4 + 32*c^3*d^8*x)*sqrt(c/d^16) + 18*(c*d^5*x^8 + 38*c^2*d^4*x^...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^7}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(x**7/(-d*x**3+8*c)/(d*x**3+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\int { -\frac {x^{7}}{{\left (d x^{3} + c\right )}^{\frac {3}{2}} {\left (d x^{3} - 8 \, c\right )}} \,d x } \] Input:

integrate(x^7/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="maxima")
 

Output:

-integrate(x^7/((d*x^3 + c)^(3/2)*(d*x^3 - 8*c)), x)
 

Giac [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\int { -\frac {x^{7}}{{\left (d x^{3} + c\right )}^{\frac {3}{2}} {\left (d x^{3} - 8 \, c\right )}} \,d x } \] Input:

integrate(x^7/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="giac")
 

Output:

integrate(-x^7/((d*x^3 + c)^(3/2)*(d*x^3 - 8*c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^7}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\int \frac {x^7}{{\left (d\,x^3+c\right )}^{3/2}\,\left (8\,c-d\,x^3\right )} \,d x \] Input:

int(x^7/((c + d*x^3)^(3/2)*(8*c - d*x^3)),x)
 

Output:

int(x^7/((c + d*x^3)^(3/2)*(8*c - d*x^3)), x)
 

Reduce [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\int \frac {\sqrt {d \,x^{3}+c}\, x^{7}}{-d^{3} x^{9}+6 c \,d^{2} x^{6}+15 c^{2} d \,x^{3}+8 c^{3}}d x \] Input:

int(x^7/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x)
 

Output:

int((sqrt(c + d*x**3)*x**7)/(8*c**3 + 15*c**2*d*x**3 + 6*c*d**2*x**6 - d** 
3*x**9),x)