\(\int \frac {1}{x^2 (8 c-d x^3) (c+d x^3)^{3/2}} \, dx\) [509]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 653 \[ \int \frac {1}{x^2 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\frac {2}{27 c^2 x \sqrt {c+d x^3}}-\frac {43 \sqrt {c+d x^3}}{216 c^3 x}+\frac {43 \sqrt [3]{d} \sqrt {c+d x^3}}{216 c^3 \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}-\frac {\sqrt [3]{d} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{432 \sqrt {3} c^{17/6}}+\frac {\sqrt [3]{d} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{1296 c^{17/6}}-\frac {\sqrt [3]{d} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{1296 c^{17/6}}-\frac {43 \sqrt {2-\sqrt {3}} \sqrt [3]{d} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right )|-7-4 \sqrt {3}\right )}{144\ 3^{3/4} c^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {43 \sqrt [3]{d} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right ),-7-4 \sqrt {3}\right )}{108 \sqrt {2} \sqrt [4]{3} c^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}} \] Output:

2/27/c^2/x/(d*x^3+c)^(1/2)-43/216*(d*x^3+c)^(1/2)/c^3/x+43/216*d^(1/3)*(d* 
x^3+c)^(1/2)/c^3/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)-1/1296*d^(1/3)*arctan(3^( 
1/2)*c^(1/6)*(c^(1/3)+d^(1/3)*x)/(d*x^3+c)^(1/2))*3^(1/2)/c^(17/6)+1/1296* 
d^(1/3)*arctanh(1/3*(c^(1/3)+d^(1/3)*x)^2/c^(1/6)/(d*x^3+c)^(1/2))/c^(17/6 
)-1/1296*d^(1/3)*arctanh(1/3*(d*x^3+c)^(1/2)/c^(1/2))/c^(17/6)-43/432*(1/2 
*6^(1/2)-1/2*2^(1/2))*d^(1/3)*(c^(1/3)+d^(1/3)*x)*((c^(2/3)-c^(1/3)*d^(1/3 
)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)*EllipticE(((1-3^ 
(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x),I*3^(1/2)+2*I)*3 
^(1/4)/c^(8/3)/(c^(1/3)*(c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x 
)^2)^(1/2)/(d*x^3+c)^(1/2)+43/648*d^(1/3)*(c^(1/3)+d^(1/3)*x)*((c^(2/3)-c^ 
(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)*Elli 
pticF(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x),I*3^ 
(1/2)+2*I)*2^(1/2)*3^(3/4)/c^(8/3)/(c^(1/3)*(c^(1/3)+d^(1/3)*x)/((1+3^(1/2 
))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 11.11 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.21 \[ \int \frac {1}{x^2 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\frac {-80 c \left (27 c+43 d x^3\right )+875 c d x^3 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )-43 d^2 x^6 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{17280 c^4 x \sqrt {c+d x^3}} \] Input:

Integrate[1/(x^2*(8*c - d*x^3)*(c + d*x^3)^(3/2)),x]
 

Output:

(-80*c*(27*c + 43*d*x^3) + 875*c*d*x^3*Sqrt[1 + (d*x^3)/c]*AppellF1[2/3, 1 
/2, 1, 5/3, -((d*x^3)/c), (d*x^3)/(8*c)] - 43*d^2*x^6*Sqrt[1 + (d*x^3)/c]* 
AppellF1[5/3, 1/2, 1, 8/3, -((d*x^3)/c), (d*x^3)/(8*c)])/(17280*c^4*x*Sqrt 
[c + d*x^3])
 

Rubi [A] (verified)

Time = 1.77 (sec) , antiderivative size = 659, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {972, 27, 1053, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 972

\(\displaystyle \frac {2}{27 c^2 x \sqrt {c+d x^3}}-\frac {2 \int -\frac {d \left (43 c-5 d x^3\right )}{2 x^2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{27 c^2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {43 c-5 d x^3}{x^2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{27 c^2}+\frac {2}{27 c^2 x \sqrt {c+d x^3}}\)

\(\Big \downarrow \) 1053

\(\displaystyle \frac {-\frac {\int -\frac {c d x \left (350 c-43 d x^3\right )}{2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{8 c^2}-\frac {43 \sqrt {c+d x^3}}{8 c x}}{27 c^2}+\frac {2}{27 c^2 x \sqrt {c+d x^3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {d \int \frac {x \left (350 c-43 d x^3\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{16 c}-\frac {43 \sqrt {c+d x^3}}{8 c x}}{27 c^2}+\frac {2}{27 c^2 x \sqrt {c+d x^3}}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {\frac {d \int \left (\frac {6 c x}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}+\frac {43 x}{\sqrt {d x^3+c}}\right )dx}{16 c}-\frac {43 \sqrt {c+d x^3}}{8 c x}}{27 c^2}+\frac {2}{27 c^2 x \sqrt {c+d x^3}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {d \left (\frac {86 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {43 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt {3}\right )}{d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {\sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{\sqrt {3} d^{2/3}}+\frac {\sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{3 d^{2/3}}-\frac {\sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{3 d^{2/3}}+\frac {86 \sqrt {c+d x^3}}{d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}\right )}{16 c}-\frac {43 \sqrt {c+d x^3}}{8 c x}}{27 c^2}+\frac {2}{27 c^2 x \sqrt {c+d x^3}}\)

Input:

Int[1/(x^2*(8*c - d*x^3)*(c + d*x^3)^(3/2)),x]
 

Output:

2/(27*c^2*x*Sqrt[c + d*x^3]) + ((-43*Sqrt[c + d*x^3])/(8*c*x) + (d*((86*Sq 
rt[c + d*x^3])/(d^(2/3)*((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)) - (c^(1/6)*Ar 
cTan[(Sqrt[3]*c^(1/6)*(c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]])/(Sqrt[3]*d^ 
(2/3)) + (c^(1/6)*ArcTanh[(c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^ 
3])])/(3*d^(2/3)) - (c^(1/6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(3*d^(2 
/3)) - (43*3^(1/4)*Sqrt[2 - Sqrt[3]]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c 
^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3) 
*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3]) 
*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + 
 d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3]) + (86 
*Sqrt[2]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + 
 d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticF[ArcSin[((1 
- Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 
 4*Sqrt[3]])/(3^(1/4)*d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + S 
qrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3])))/(16*c))/(27*c^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 972
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x 
^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*n*(b*c - a*d)*(p + 
 1))   Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*( 
b*c - a*d)*(p + 1) + d*b*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{ 
a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] & 
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1053
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_ 
))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b 
*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^n*( 
m + 1))   Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) 
- e*(b*c + a*d)*(m + n + 1) - e*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2 
) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 
0] && LtQ[m, -1]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.45 (sec) , antiderivative size = 890, normalized size of antiderivative = 1.36

method result size
elliptic \(\text {Expression too large to display}\) \(890\)
risch \(\text {Expression too large to display}\) \(1334\)
default \(\text {Expression too large to display}\) \(1361\)

Input:

int(1/x^2/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/8*(d*x^3+c)^(1/2)/c^3/x-2/27*d/c^3*x^2/((x^3+c/d)*d)^(1/2)-43/648*I/c^3 
*3^(1/2)*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2 
)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*( 
-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2) 
^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d* 
x^3+c)^(1/2)*((-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*Ellip 
ticE(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3) 
)*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c* 
d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*Elli 
pticF(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3 
))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c 
*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)))-1/1944*I/c^3/d^2*2^(1 
/2)*sum(1/_alpha*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/ 
3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(- 
c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2 
)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I 
*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-( 
-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d* 
(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^( 
1/2),-1/18/d*(2*I*(-c*d^2)^(1/3)*_alpha^2*3^(1/2)*d-I*(-c*d^2)^(2/3)*_a...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2379 vs. \(2 (461) = 922\).

Time = 0.73 (sec) , antiderivative size = 2379, normalized size of antiderivative = 3.64 \[ \int \frac {1}{x^2 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(1/x^2/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="fricas")
 

Output:

-1/15552*(3096*(d*x^4 + c*x)*sqrt(d)*weierstrassZeta(0, -4*c/d, weierstras 
sPInverse(0, -4*c/d, x)) - (c^3*d*x^4 + c^4*x + sqrt(-3)*(c^3*d*x^4 + c^4* 
x))*(d^2/c^17)^(1/6)*log((d^4*x^9 + 318*c*d^3*x^6 + 1200*c^2*d^2*x^3 + 640 
*c^3*d - 9*(5*c^12*d^2*x^7 + 64*c^13*d*x^4 + 32*c^14*x + sqrt(-3)*(5*c^12* 
d^2*x^7 + 64*c^13*d*x^4 + 32*c^14*x))*(d^2/c^17)^(2/3) + 3*sqrt(d*x^3 + c) 
*(6*(5*c^15*d*x^5 + 32*c^16*x^2 - sqrt(-3)*(5*c^15*d*x^5 + 32*c^16*x^2))*( 
d^2/c^17)^(5/6) - 2*(7*c^9*d^2*x^6 + 152*c^10*d*x^3 + 64*c^11)*sqrt(d^2/c^ 
17) + (c^3*d^3*x^7 + 80*c^4*d^2*x^4 + 160*c^5*d*x + sqrt(-3)*(c^3*d^3*x^7 
+ 80*c^4*d^2*x^4 + 160*c^5*d*x))*(d^2/c^17)^(1/6)) - 9*(c^6*d^3*x^8 + 38*c 
^7*d^2*x^5 + 64*c^8*d*x^2 - sqrt(-3)*(c^6*d^3*x^8 + 38*c^7*d^2*x^5 + 64*c^ 
8*d*x^2))*(d^2/c^17)^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512* 
c^3)) + (c^3*d*x^4 + c^4*x + sqrt(-3)*(c^3*d*x^4 + c^4*x))*(d^2/c^17)^(1/6 
)*log((d^4*x^9 + 318*c*d^3*x^6 + 1200*c^2*d^2*x^3 + 640*c^3*d - 9*(5*c^12* 
d^2*x^7 + 64*c^13*d*x^4 + 32*c^14*x + sqrt(-3)*(5*c^12*d^2*x^7 + 64*c^13*d 
*x^4 + 32*c^14*x))*(d^2/c^17)^(2/3) - 3*sqrt(d*x^3 + c)*(6*(5*c^15*d*x^5 + 
 32*c^16*x^2 - sqrt(-3)*(5*c^15*d*x^5 + 32*c^16*x^2))*(d^2/c^17)^(5/6) - 2 
*(7*c^9*d^2*x^6 + 152*c^10*d*x^3 + 64*c^11)*sqrt(d^2/c^17) + (c^3*d^3*x^7 
+ 80*c^4*d^2*x^4 + 160*c^5*d*x + sqrt(-3)*(c^3*d^3*x^7 + 80*c^4*d^2*x^4 + 
160*c^5*d*x))*(d^2/c^17)^(1/6)) - 9*(c^6*d^3*x^8 + 38*c^7*d^2*x^5 + 64*c^8 
*d*x^2 - sqrt(-3)*(c^6*d^3*x^8 + 38*c^7*d^2*x^5 + 64*c^8*d*x^2))*(d^2/c...
 

Sympy [F]

\[ \int \frac {1}{x^2 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=- \int \frac {1}{- 8 c^{2} x^{2} \sqrt {c + d x^{3}} - 7 c d x^{5} \sqrt {c + d x^{3}} + d^{2} x^{8} \sqrt {c + d x^{3}}}\, dx \] Input:

integrate(1/x**2/(-d*x**3+8*c)/(d*x**3+c)**(3/2),x)
 

Output:

-Integral(1/(-8*c**2*x**2*sqrt(c + d*x**3) - 7*c*d*x**5*sqrt(c + d*x**3) + 
 d**2*x**8*sqrt(c + d*x**3)), x)
 

Maxima [F]

\[ \int \frac {1}{x^2 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\int { -\frac {1}{{\left (d x^{3} + c\right )}^{\frac {3}{2}} {\left (d x^{3} - 8 \, c\right )} x^{2}} \,d x } \] Input:

integrate(1/x^2/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="maxima")
 

Output:

-integrate(1/((d*x^3 + c)^(3/2)*(d*x^3 - 8*c)*x^2), x)
 

Giac [F]

\[ \int \frac {1}{x^2 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\int { -\frac {1}{{\left (d x^{3} + c\right )}^{\frac {3}{2}} {\left (d x^{3} - 8 \, c\right )} x^{2}} \,d x } \] Input:

integrate(1/x^2/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="giac")
 

Output:

integrate(-1/((d*x^3 + c)^(3/2)*(d*x^3 - 8*c)*x^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\int \frac {1}{x^2\,{\left (d\,x^3+c\right )}^{3/2}\,\left (8\,c-d\,x^3\right )} \,d x \] Input:

int(1/(x^2*(c + d*x^3)^(3/2)*(8*c - d*x^3)),x)
 

Output:

int(1/(x^2*(c + d*x^3)^(3/2)*(8*c - d*x^3)), x)
 

Reduce [F]

\[ \int \frac {1}{x^2 \left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx=\frac {-2 \sqrt {d \,x^{3}+c}+5 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{4}}{-d^{3} x^{9}+6 c \,d^{2} x^{6}+15 c^{2} d \,x^{3}+8 c^{3}}d x \right ) c \,d^{2} x +5 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{4}}{-d^{3} x^{9}+6 c \,d^{2} x^{6}+15 c^{2} d \,x^{3}+8 c^{3}}d x \right ) d^{3} x^{4}-38 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{-d^{3} x^{9}+6 c \,d^{2} x^{6}+15 c^{2} d \,x^{3}+8 c^{3}}d x \right ) c^{2} d x -38 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{-d^{3} x^{9}+6 c \,d^{2} x^{6}+15 c^{2} d \,x^{3}+8 c^{3}}d x \right ) c \,d^{2} x^{4}}{16 c^{2} x \left (d \,x^{3}+c \right )} \] Input:

int(1/x^2/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x)
 

Output:

( - 2*sqrt(c + d*x**3) + 5*int((sqrt(c + d*x**3)*x**4)/(8*c**3 + 15*c**2*d 
*x**3 + 6*c*d**2*x**6 - d**3*x**9),x)*c*d**2*x + 5*int((sqrt(c + d*x**3)*x 
**4)/(8*c**3 + 15*c**2*d*x**3 + 6*c*d**2*x**6 - d**3*x**9),x)*d**3*x**4 - 
38*int((sqrt(c + d*x**3)*x)/(8*c**3 + 15*c**2*d*x**3 + 6*c*d**2*x**6 - d** 
3*x**9),x)*c**2*d*x - 38*int((sqrt(c + d*x**3)*x)/(8*c**3 + 15*c**2*d*x**3 
 + 6*c*d**2*x**6 - d**3*x**9),x)*c*d**2*x**4)/(16*c**2*x*(c + d*x**3))