\(\int \frac {x}{\sqrt {-a+b x^3} (-2 (5+3 \sqrt {3}) a+b x^3)} \, dx\) [525]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 328 \[ \int \frac {x}{\sqrt {-a+b x^3} \left (-2 \left (5+3 \sqrt {3}\right ) a+b x^3\right )} \, dx=\frac {\left (2-\sqrt {3}\right ) \arctan \left (\frac {\sqrt [4]{3} \left (1-\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {-a+b x^3}}\right )}{6 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}}+\frac {\left (2-\sqrt {3}\right ) \arctan \left (\frac {\sqrt [4]{3} \sqrt [6]{a} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+2 \sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {-a+b x^3}}\right )}{3 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}}+\frac {\left (2-\sqrt {3}\right ) \text {arctanh}\left (\frac {\sqrt [4]{3} \left (1+\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {-a+b x^3}}\right )}{2 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \text {arctanh}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt {-a+b x^3}}{\sqrt {2} 3^{3/4} \sqrt {a}}\right )}{3 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}} \] Output:

1/36*(2-3^(1/2))*arctan(1/2*3^(1/4)*(1-3^(1/2))*a^(1/6)*(a^(1/3)-b^(1/3)*x 
)*2^(1/2)/(b*x^3-a)^(1/2))*2^(1/2)*3^(3/4)/a^(5/6)/b^(2/3)+1/18*(2-3^(1/2) 
)*arctan(1/2*3^(1/4)*a^(1/6)*((1+3^(1/2))*a^(1/3)+2*b^(1/3)*x)*2^(1/2)/(b* 
x^3-a)^(1/2))*2^(1/2)*3^(3/4)/a^(5/6)/b^(2/3)+1/12*(2-3^(1/2))*arctanh(1/2 
*3^(1/4)*(1+3^(1/2))*a^(1/6)*(a^(1/3)-b^(1/3)*x)*2^(1/2)/(b*x^3-a)^(1/2))* 
2^(1/2)*3^(1/4)/a^(5/6)/b^(2/3)-1/18*(2-3^(1/2))*arctanh(1/6*(1-3^(1/2))*( 
b*x^3-a)^(1/2)*2^(1/2)*3^(1/4)/a^(1/2))*2^(1/2)*3^(1/4)/a^(5/6)/b^(2/3)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 10.09 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.26 \[ \int \frac {x}{\sqrt {-a+b x^3} \left (-2 \left (5+3 \sqrt {3}\right ) a+b x^3\right )} \, dx=-\frac {x^2 \sqrt {1-\frac {b x^3}{a}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},\frac {b x^3}{a},\frac {b x^3}{10 a+6 \sqrt {3} a}\right )}{\left (20 a+12 \sqrt {3} a\right ) \sqrt {-a+b x^3}} \] Input:

Integrate[x/(Sqrt[-a + b*x^3]*(-2*(5 + 3*Sqrt[3])*a + b*x^3)),x]
 

Output:

-((x^2*Sqrt[1 - (b*x^3)/a]*AppellF1[2/3, 1/2, 1, 5/3, (b*x^3)/a, (b*x^3)/( 
10*a + 6*Sqrt[3]*a)])/((20*a + 12*Sqrt[3]*a)*Sqrt[-a + b*x^3]))
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {990}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\sqrt {b x^3-a} \left (b x^3-2 \left (5+3 \sqrt {3}\right ) a\right )} \, dx\)

\(\Big \downarrow \) 990

\(\displaystyle \frac {\left (2-\sqrt {3}\right ) \arctan \left (\frac {\sqrt [4]{3} \left (1-\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {b x^3-a}}\right )}{6 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}}+\frac {\left (2-\sqrt {3}\right ) \arctan \left (\frac {\sqrt [4]{3} \sqrt [6]{a} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+2 \sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {b x^3-a}}\right )}{3 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}}+\frac {\left (2-\sqrt {3}\right ) \text {arctanh}\left (\frac {\sqrt [4]{3} \left (1+\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {b x^3-a}}\right )}{2 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \text {arctanh}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt {b x^3-a}}{\sqrt {2} 3^{3/4} \sqrt {a}}\right )}{3 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}}\)

Input:

Int[x/(Sqrt[-a + b*x^3]*(-2*(5 + 3*Sqrt[3])*a + b*x^3)),x]
 

Output:

((2 - Sqrt[3])*ArcTan[(3^(1/4)*(1 - Sqrt[3])*a^(1/6)*(a^(1/3) - b^(1/3)*x) 
)/(Sqrt[2]*Sqrt[-a + b*x^3])])/(6*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)) + ((2 - 
 Sqrt[3])*ArcTan[(3^(1/4)*a^(1/6)*((1 + Sqrt[3])*a^(1/3) + 2*b^(1/3)*x))/( 
Sqrt[2]*Sqrt[-a + b*x^3])])/(3*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)) + ((2 - Sq 
rt[3])*ArcTanh[(3^(1/4)*(1 + Sqrt[3])*a^(1/6)*(a^(1/3) - b^(1/3)*x))/(Sqrt 
[2]*Sqrt[-a + b*x^3])])/(2*Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3)) - ((2 - Sqrt[3 
])*ArcTanh[((1 - Sqrt[3])*Sqrt[-a + b*x^3])/(Sqrt[2]*3^(3/4)*Sqrt[a])])/(3 
*Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3))
 

Defintions of rubi rules used

rule 990
Int[(x_)/(Sqrt[(a_) + (b_.)*(x_)^3]*((c_) + (d_.)*(x_)^3)), x_Symbol] :> Wi 
th[{q = Rt[b/a, 3], r = Simplify[(b*c - 10*a*d)/(6*a*d)]}, Simp[q*(2 - r)*( 
ArcTanh[(1 - r)*(Sqrt[a + b*x^3]/(Sqrt[2]*Rt[-a, 2]*r^(3/2)))]/(3*Sqrt[2]*R 
t[-a, 2]*d*r^(3/2))), x] + (-Simp[q*(2 - r)*(ArcTanh[Rt[-a, 2]*Sqrt[r]*(1 + 
 r)*((1 + q*x)/(Sqrt[2]*Sqrt[a + b*x^3]))]/(2*Sqrt[2]*Rt[-a, 2]*d*r^(3/2))) 
, x] - Simp[q*(2 - r)*(ArcTan[Rt[-a, 2]*Sqrt[r]*((1 + r - 2*q*x)/(Sqrt[2]*S 
qrt[a + b*x^3]))]/(3*Sqrt[2]*Rt[-a, 2]*d*Sqrt[r])), x] - Simp[q*(2 - r)*(Ar 
cTan[Rt[-a, 2]*(1 - r)*Sqrt[r]*((1 + q*x)/(Sqrt[2]*Sqrt[a + b*x^3]))]/(6*Sq 
rt[2]*Rt[-a, 2]*d*Sqrt[r])), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a* 
d, 0] && EqQ[b^2*c^2 - 20*a*b*c*d - 8*a^2*d^2, 0] && NegQ[a]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.92 (sec) , antiderivative size = 510, normalized size of antiderivative = 1.55

method result size
default \(-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-6 \sqrt {3}\, a -10 a \right )}{\sum }\frac {\left (a \,b^{2}\right )^{\frac {1}{3}} \sqrt {-\frac {i b \left (2 x +\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}+\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{2 \left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {b \left (x -\frac {\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{-3 \left (a \,b^{2}\right )^{\frac {1}{3}}-i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {2}\, \sqrt {\frac {i b \left (2 x +\frac {-i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}+\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{\left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (3 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, b +4 b^{2} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}-3 i \left (a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}-2 \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, b -6 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b -6 \underline {\hspace {1.25 ex}}\alpha ^{2} b^{2}-2 \left (a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}+6 i \left (a \,b^{2}\right )^{\frac {2}{3}}+3 \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b +3 \left (a \,b^{2}\right )^{\frac {2}{3}}\right ) \operatorname {EllipticPi}\left (\frac {\sqrt {3}\, \sqrt {-\frac {i \left (x +\frac {\left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {-2 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}\, b +i \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+4 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} b +2 \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}-2 i \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, a b -3 \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -2 \sqrt {3}\, a b -2 i a b +3 a b}{6 b a}, \sqrt {-\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha \sqrt {b \,x^{3}-a}}\right )}{27 a \,b^{3}}\) \(510\)
elliptic \(-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-6 \sqrt {3}\, a -10 a \right )}{\sum }\frac {\left (a \,b^{2}\right )^{\frac {1}{3}} \sqrt {-\frac {i b \left (2 x +\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}+\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{2 \left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {b \left (x -\frac {\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{-3 \left (a \,b^{2}\right )^{\frac {1}{3}}-i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {2}\, \sqrt {\frac {i b \left (2 x +\frac {-i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}+\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{\left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (3 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, b +4 b^{2} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}-3 i \left (a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}-2 \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, b -6 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b -6 \underline {\hspace {1.25 ex}}\alpha ^{2} b^{2}-2 \left (a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}+6 i \left (a \,b^{2}\right )^{\frac {2}{3}}+3 \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b +3 \left (a \,b^{2}\right )^{\frac {2}{3}}\right ) \operatorname {EllipticPi}\left (\frac {\sqrt {3}\, \sqrt {-\frac {i \left (x +\frac {\left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {-2 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}\, b +i \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+4 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} b +2 \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}-2 i \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, a b -3 \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -2 \sqrt {3}\, a b -2 i a b +3 a b}{6 b a}, \sqrt {-\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha \sqrt {b \,x^{3}-a}}\right )}{27 a \,b^{3}}\) \(510\)

Input:

int(x/(b*x^3-a)^(1/2)/(-2*(5+3*3^(1/2))*a+b*x^3),x,method=_RETURNVERBOSE)
 

Output:

-1/27*I/a/b^3*2^(1/2)*sum(1/_alpha*(a*b^2)^(1/3)*(-1/2*I*b*(2*x+1/b*(I*3^( 
1/2)*(a*b^2)^(1/3)+(a*b^2)^(1/3)))/(a*b^2)^(1/3))^(1/2)*(b*(x-1/b*(a*b^2)^ 
(1/3))/(-3*(a*b^2)^(1/3)-I*3^(1/2)*(a*b^2)^(1/3)))^(1/2)*(1/2*I*b*(2*x+1/b 
*(-I*3^(1/2)*(a*b^2)^(1/3)+(a*b^2)^(1/3)))/(a*b^2)^(1/3))^(1/2)/(b*x^3-a)^ 
(1/2)*(3*I*(a*b^2)^(1/3)*_alpha*3^(1/2)*b+4*b^2*_alpha^2*3^(1/2)-3*I*(a*b^ 
2)^(2/3)*3^(1/2)-2*(a*b^2)^(1/3)*_alpha*3^(1/2)*b-6*I*(a*b^2)^(1/3)*_alpha 
*b-6*_alpha^2*b^2-2*(a*b^2)^(2/3)*3^(1/2)+6*I*(a*b^2)^(2/3)+3*(a*b^2)^(1/3 
)*_alpha*b+3*(a*b^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(-I*(x+1/2/b*(a*b^2)^(1 
/3)+1/2*I*3^(1/2)/b*(a*b^2)^(1/3))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2),1/6/b*(- 
2*I*(a*b^2)^(1/3)*_alpha^2*3^(1/2)*b+I*(a*b^2)^(2/3)*_alpha*3^(1/2)+4*I*(a 
*b^2)^(1/3)*_alpha^2*b+2*(a*b^2)^(2/3)*_alpha*3^(1/2)-2*I*(a*b^2)^(2/3)*_a 
lpha+I*3^(1/2)*a*b-3*(a*b^2)^(2/3)*_alpha-2*3^(1/2)*a*b-2*I*a*b+3*a*b)/a,( 
-I*3^(1/2)/b*(a*b^2)^(1/3)/(-3/2/b*(a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(a*b^2)^( 
1/3)))^(1/2)),_alpha=RootOf(b*_Z^3-6*3^(1/2)*a-10*a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5667 vs. \(2 (222) = 444\).

Time = 4.38 (sec) , antiderivative size = 5667, normalized size of antiderivative = 17.28 \[ \int \frac {x}{\sqrt {-a+b x^3} \left (-2 \left (5+3 \sqrt {3}\right ) a+b x^3\right )} \, dx=\text {Too large to display} \] Input:

integrate(x/(b*x^3-a)^(1/2)/(-2*(5+3*3^(1/2))*a+b*x^3),x, algorithm="frica 
s")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {x}{\sqrt {-a+b x^3} \left (-2 \left (5+3 \sqrt {3}\right ) a+b x^3\right )} \, dx=\int \frac {x}{\sqrt {- a + b x^{3}} \left (- 6 \sqrt {3} a - 10 a + b x^{3}\right )}\, dx \] Input:

integrate(x/(b*x**3-a)**(1/2)/(-2*(5+3*3**(1/2))*a+b*x**3),x)
 

Output:

Integral(x/(sqrt(-a + b*x**3)*(-6*sqrt(3)*a - 10*a + b*x**3)), x)
 

Maxima [F]

\[ \int \frac {x}{\sqrt {-a+b x^3} \left (-2 \left (5+3 \sqrt {3}\right ) a+b x^3\right )} \, dx=\int { \frac {x}{{\left (b x^{3} - 2 \, a {\left (3 \, \sqrt {3} + 5\right )}\right )} \sqrt {b x^{3} - a}} \,d x } \] Input:

integrate(x/(b*x^3-a)^(1/2)/(-2*(5+3*3^(1/2))*a+b*x^3),x, algorithm="maxim 
a")
 

Output:

integrate(x/((b*x^3 - 2*a*(3*sqrt(3) + 5))*sqrt(b*x^3 - a)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x}{\sqrt {-a+b x^3} \left (-2 \left (5+3 \sqrt {3}\right ) a+b x^3\right )} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(x/(b*x^3-a)^(1/2)/(-2*(5+3*3^(1/2))*a+b*x^3),x, algorithm="giac" 
)
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:index.cc index_m operator + Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\sqrt {-a+b x^3} \left (-2 \left (5+3 \sqrt {3}\right ) a+b x^3\right )} \, dx=\int \frac {x}{\sqrt {b\,x^3-a}\,\left (b\,x^3-2\,a\,\left (3\,\sqrt {3}+5\right )\right )} \,d x \] Input:

int(x/((b*x^3 - a)^(1/2)*(b*x^3 - 2*a*(3*3^(1/2) + 5))),x)
 

Output:

int(x/((b*x^3 - a)^(1/2)*(b*x^3 - 2*a*(3*3^(1/2) + 5))), x)
 

Reduce [F]

\[ \int \frac {x}{\sqrt {-a+b x^3} \left (-2 \left (5+3 \sqrt {3}\right ) a+b x^3\right )} \, dx=6 \sqrt {3}\, \left (\int \frac {\sqrt {b \,x^{3}-a}\, x}{b^{3} x^{9}-21 a \,b^{2} x^{6}+12 a^{2} b \,x^{3}+8 a^{3}}d x \right ) a +\left (\int \frac {\sqrt {b \,x^{3}-a}\, x^{4}}{b^{3} x^{9}-21 a \,b^{2} x^{6}+12 a^{2} b \,x^{3}+8 a^{3}}d x \right ) b -10 \left (\int \frac {\sqrt {b \,x^{3}-a}\, x}{b^{3} x^{9}-21 a \,b^{2} x^{6}+12 a^{2} b \,x^{3}+8 a^{3}}d x \right ) a \] Input:

int(x/(b*x^3-a)^(1/2)/(-2*(5+3*3^(1/2))*a+b*x^3),x)
 

Output:

6*sqrt(3)*int((sqrt( - a + b*x**3)*x)/(8*a**3 + 12*a**2*b*x**3 - 21*a*b**2 
*x**6 + b**3*x**9),x)*a + int((sqrt( - a + b*x**3)*x**4)/(8*a**3 + 12*a**2 
*b*x**3 - 21*a*b**2*x**6 + b**3*x**9),x)*b - 10*int((sqrt( - a + b*x**3)*x 
)/(8*a**3 + 12*a**2*b*x**3 - 21*a*b**2*x**6 + b**3*x**9),x)*a