\(\int \frac {x^3 (c+d x^3)^{3/2}}{a+b x^3} \, dx\) [546]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 65 \[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{a+b x^3} \, dx=\frac {c x^4 \sqrt {c+d x^3} \operatorname {AppellF1}\left (\frac {4}{3},1,-\frac {3}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{4 a \sqrt {1+\frac {d x^3}{c}}} \] Output:

1/4*c*x^4*(d*x^3+c)^(1/2)*AppellF1(4/3,1,-3/2,7/3,-b*x^3/a,-d*x^3/c)/a/(1+ 
d*x^3/c)^(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(280\) vs. \(2(65)=130\).

Time = 8.94 (sec) , antiderivative size = 280, normalized size of antiderivative = 4.31 \[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{a+b x^3} \, dx=\frac {x \left (8 \left (c+d x^3\right ) \left (14 b c-11 a d+5 b d x^3\right )+\frac {\left (27 b^2 c^2-88 a b c d+55 a^2 d^2\right ) x^3 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}{a}-\frac {64 a^2 c^2 (-14 b c+11 a d) \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}{\left (a+b x^3\right ) \left (-8 a c \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+3 x^3 \left (2 b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},2,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )\right )}\right )}{220 b^2 \sqrt {c+d x^3}} \] Input:

Integrate[(x^3*(c + d*x^3)^(3/2))/(a + b*x^3),x]
 

Output:

(x*(8*(c + d*x^3)*(14*b*c - 11*a*d + 5*b*d*x^3) + ((27*b^2*c^2 - 88*a*b*c* 
d + 55*a^2*d^2)*x^3*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1/2, 1, 7/3, -((d*x^ 
3)/c), -((b*x^3)/a)])/a - (64*a^2*c^2*(-14*b*c + 11*a*d)*AppellF1[1/3, 1/2 
, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)])/((a + b*x^3)*(-8*a*c*AppellF1[1/3, 
1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)] + 3*x^3*(2*b*c*AppellF1[4/3, 1/2, 
 2, 7/3, -((d*x^3)/c), -((b*x^3)/a)] + a*d*AppellF1[4/3, 3/2, 1, 7/3, -((d 
*x^3)/c), -((b*x^3)/a)])))))/(220*b^2*Sqrt[c + d*x^3])
 

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{a+b x^3} \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \frac {c \sqrt {c+d x^3} \int \frac {x^3 \left (\frac {d x^3}{c}+1\right )^{3/2}}{b x^3+a}dx}{\sqrt {\frac {d x^3}{c}+1}}\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {c x^4 \sqrt {c+d x^3} \operatorname {AppellF1}\left (\frac {4}{3},1,-\frac {3}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{4 a \sqrt {\frac {d x^3}{c}+1}}\)

Input:

Int[(x^3*(c + d*x^3)^(3/2))/(a + b*x^3),x]
 

Output:

(c*x^4*Sqrt[c + d*x^3]*AppellF1[4/3, 1, -3/2, 7/3, -((b*x^3)/a), -((d*x^3) 
/c)])/(4*a*Sqrt[1 + (d*x^3)/c])
 

Defintions of rubi rules used

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 2.38 (sec) , antiderivative size = 800, normalized size of antiderivative = 12.31

method result size
risch \(\text {Expression too large to display}\) \(800\)
elliptic \(\text {Expression too large to display}\) \(846\)
default \(\text {Expression too large to display}\) \(1101\)

Input:

int(x^3*(d*x^3+c)^(3/2)/(b*x^3+a),x,method=_RETURNVERBOSE)
 

Output:

-2/55*x*(-5*b*d*x^3+11*a*d-14*b*c)*(d*x^3+c)^(1/2)/b^2+1/55/b^2*(-2/3*I*(5 
5*a^2*d^2-88*a*b*c*d+27*b^2*c^2)/b*3^(1/2)/d*(-c*d^2)^(1/3)*(I*(x+1/2/d*(- 
c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/ 
2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2) 
^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)) 
*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*EllipticF(1/3*3^(1/2)*(I* 
(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2) 
^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^( 
1/2)/d*(-c*d^2)^(1/3)))^(1/2))+55/3*I*a*(a^2*d^2-2*a*b*c*d+b^2*c^2)/b/d^2* 
2^(1/2)*sum(1/(a*d-b*c)/_alpha^2*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1 
/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^ 
2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2 
*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d 
*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+ 
2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1 
/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/( 
-c*d^2)^(1/3))^(1/2),1/2*b/d*(2*I*(-c*d^2)^(1/3)*_alpha^2*3^(1/2)*d-I*(-c* 
d^2)^(2/3)*_alpha*3^(1/2)+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3*c*d)/(a* 
d-b*c),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d* 
(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a)))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{a+b x^3} \, dx=\text {Timed out} \] Input:

integrate(x^3*(d*x^3+c)^(3/2)/(b*x^3+a),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{a+b x^3} \, dx=\int \frac {x^{3} \left (c + d x^{3}\right )^{\frac {3}{2}}}{a + b x^{3}}\, dx \] Input:

integrate(x**3*(d*x**3+c)**(3/2)/(b*x**3+a),x)
                                                                                    
                                                                                    
 

Output:

Integral(x**3*(c + d*x**3)**(3/2)/(a + b*x**3), x)
 

Maxima [F]

\[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{a+b x^3} \, dx=\int { \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}} x^{3}}{b x^{3} + a} \,d x } \] Input:

integrate(x^3*(d*x^3+c)^(3/2)/(b*x^3+a),x, algorithm="maxima")
 

Output:

integrate((d*x^3 + c)^(3/2)*x^3/(b*x^3 + a), x)
 

Giac [F]

\[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{a+b x^3} \, dx=\int { \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}} x^{3}}{b x^{3} + a} \,d x } \] Input:

integrate(x^3*(d*x^3+c)^(3/2)/(b*x^3+a),x, algorithm="giac")
 

Output:

integrate((d*x^3 + c)^(3/2)*x^3/(b*x^3 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{a+b x^3} \, dx=\int \frac {x^3\,{\left (d\,x^3+c\right )}^{3/2}}{b\,x^3+a} \,d x \] Input:

int((x^3*(c + d*x^3)^(3/2))/(a + b*x^3),x)
 

Output:

int((x^3*(c + d*x^3)^(3/2))/(a + b*x^3), x)
 

Reduce [F]

\[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{a+b x^3} \, dx=\frac {-22 \sqrt {d \,x^{3}+c}\, a d x +28 \sqrt {d \,x^{3}+c}\, b c x +10 \sqrt {d \,x^{3}+c}\, b d \,x^{4}+22 \left (\int \frac {\sqrt {d \,x^{3}+c}}{b d \,x^{6}+a d \,x^{3}+b c \,x^{3}+a c}d x \right ) a^{2} c d -28 \left (\int \frac {\sqrt {d \,x^{3}+c}}{b d \,x^{6}+a d \,x^{3}+b c \,x^{3}+a c}d x \right ) a b \,c^{2}+55 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{3}}{b d \,x^{6}+a d \,x^{3}+b c \,x^{3}+a c}d x \right ) a^{2} d^{2}-88 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{3}}{b d \,x^{6}+a d \,x^{3}+b c \,x^{3}+a c}d x \right ) a b c d +27 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{3}}{b d \,x^{6}+a d \,x^{3}+b c \,x^{3}+a c}d x \right ) b^{2} c^{2}}{55 b^{2}} \] Input:

int(x^3*(d*x^3+c)^(3/2)/(b*x^3+a),x)
 

Output:

( - 22*sqrt(c + d*x**3)*a*d*x + 28*sqrt(c + d*x**3)*b*c*x + 10*sqrt(c + d* 
x**3)*b*d*x**4 + 22*int(sqrt(c + d*x**3)/(a*c + a*d*x**3 + b*c*x**3 + b*d* 
x**6),x)*a**2*c*d - 28*int(sqrt(c + d*x**3)/(a*c + a*d*x**3 + b*c*x**3 + b 
*d*x**6),x)*a*b*c**2 + 55*int((sqrt(c + d*x**3)*x**3)/(a*c + a*d*x**3 + b* 
c*x**3 + b*d*x**6),x)*a**2*d**2 - 88*int((sqrt(c + d*x**3)*x**3)/(a*c + a* 
d*x**3 + b*c*x**3 + b*d*x**6),x)*a*b*c*d + 27*int((sqrt(c + d*x**3)*x**3)/ 
(a*c + a*d*x**3 + b*c*x**3 + b*d*x**6),x)*b**2*c**2)/(55*b**2)