\(\int \frac {1}{(a+b x^3) \sqrt {c+d x^3}} \, dx\) [558]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 59 \[ \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\frac {x \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {1}{3},1,\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a \sqrt {c+d x^3}} \] Output:

x*(1+d*x^3/c)^(1/2)*AppellF1(1/3,1,1/2,4/3,-b*x^3/a,-d*x^3/c)/a/(d*x^3+c)^ 
(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(161\) vs. \(2(59)=118\).

Time = 10.06 (sec) , antiderivative size = 161, normalized size of antiderivative = 2.73 \[ \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=-\frac {8 a c x \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}{\left (a+b x^3\right ) \sqrt {c+d x^3} \left (-8 a c \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+3 x^3 \left (2 b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},2,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )\right )} \] Input:

Integrate[1/((a + b*x^3)*Sqrt[c + d*x^3]),x]
 

Output:

(-8*a*c*x*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)])/((a + b* 
x^3)*Sqrt[c + d*x^3]*(-8*a*c*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b 
*x^3)/a)] + 3*x^3*(2*b*c*AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), -((b*x^3 
)/a)] + a*d*AppellF1[4/3, 3/2, 1, 7/3, -((d*x^3)/c), -((b*x^3)/a)])))
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {937, 936}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 937

\(\displaystyle \frac {\sqrt {\frac {d x^3}{c}+1} \int \frac {1}{\left (b x^3+a\right ) \sqrt {\frac {d x^3}{c}+1}}dx}{\sqrt {c+d x^3}}\)

\(\Big \downarrow \) 936

\(\displaystyle \frac {x \sqrt {\frac {d x^3}{c}+1} \operatorname {AppellF1}\left (\frac {1}{3},1,\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a \sqrt {c+d x^3}}\)

Input:

Int[1/((a + b*x^3)*Sqrt[c + d*x^3]),x]
 

Output:

(x*Sqrt[1 + (d*x^3)/c]*AppellF1[1/3, 1, 1/2, 4/3, -((b*x^3)/a), -((d*x^3)/ 
c)])/(a*Sqrt[c + d*x^3])
 

Defintions of rubi rules used

rule 936
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^p*c^q*x*AppellF1[1/n, -p, -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c) 
], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] 
 && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 937
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]) 
  Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, p, q 
}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 1.07 (sec) , antiderivative size = 429, normalized size of antiderivative = 7.27

method result size
default \(-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \operatorname {EllipticPi}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {b \left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}\, d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d \right )}{2 d \left (a d -b c \right )}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \left (a d -b c \right ) \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {d \,x^{3}+c}}\right )}{3 d^{2}}\) \(429\)
elliptic \(-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \operatorname {EllipticPi}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {b \left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}\, d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d \right )}{2 d \left (a d -b c \right )}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \left (a d -b c \right ) \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {d \,x^{3}+c}}\right )}{3 d^{2}}\) \(429\)

Input:

int(1/(b*x^3+a)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/3*I/d^2*2^(1/2)*sum(1/(a*d-b*c)/_alpha^2*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1 
/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x 
-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*( 
-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3 
))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c* 
d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*Elliptic 
Pi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))* 
3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1/2*b/d*(2*I*(-c*d^2)^(1/3)*_alpha^2*3^(1/ 
2)*d-I*(-c*d^2)^(2/3)*_alpha*3^(1/2)+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha 
-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I 
*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\text {Timed out} \] Input:

integrate(1/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\int \frac {1}{\left (a + b x^{3}\right ) \sqrt {c + d x^{3}}}\, dx \] Input:

integrate(1/(b*x**3+a)/(d*x**3+c)**(1/2),x)
 

Output:

Integral(1/((a + b*x**3)*sqrt(c + d*x**3)), x)
 

Maxima [F]

\[ \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )} \sqrt {d x^{3} + c}} \,d x } \] Input:

integrate(1/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*x^3 + a)*sqrt(d*x^3 + c)), x)
 

Giac [F]

\[ \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )} \sqrt {d x^{3} + c}} \,d x } \] Input:

integrate(1/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/((b*x^3 + a)*sqrt(d*x^3 + c)), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\int \frac {1}{\left (b\,x^3+a\right )\,\sqrt {d\,x^3+c}} \,d x \] Input:

int(1/((a + b*x^3)*(c + d*x^3)^(1/2)),x)
 

Output:

int(1/((a + b*x^3)*(c + d*x^3)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx=\int \frac {\sqrt {d \,x^{3}+c}}{b d \,x^{6}+a d \,x^{3}+b c \,x^{3}+a c}d x \] Input:

int(1/(b*x^3+a)/(d*x^3+c)^(1/2),x)
 

Output:

int(sqrt(c + d*x**3)/(a*c + a*d*x**3 + b*c*x**3 + b*d*x**6),x)