\(\int \frac {1}{x^2 (8 c-d x^3)^2 \sqrt {c+d x^3}} \, dx\) [607]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 665 \[ \int \frac {1}{x^2 \left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=-\frac {7 \sqrt {c+d x^3}}{432 c^3 x}+\frac {7 \sqrt [3]{d} \sqrt {c+d x^3}}{432 c^3 \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}+\frac {\sqrt {c+d x^3}}{216 c^2 x \left (8 c-d x^3\right )}-\frac {\sqrt [3]{d} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{216 \sqrt {3} c^{17/6}}+\frac {\sqrt [3]{d} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{648 c^{17/6}}-\frac {\sqrt [3]{d} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{648 c^{17/6}}-\frac {7 \sqrt {2-\sqrt {3}} \sqrt [3]{d} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right )|-7-4 \sqrt {3}\right )}{288\ 3^{3/4} c^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {7 \sqrt [3]{d} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right ),-7-4 \sqrt {3}\right )}{216 \sqrt {2} \sqrt [4]{3} c^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}} \] Output:

-7/432*(d*x^3+c)^(1/2)/c^3/x+7/432*d^(1/3)*(d*x^3+c)^(1/2)/c^3/((1+3^(1/2) 
)*c^(1/3)+d^(1/3)*x)+1/216*(d*x^3+c)^(1/2)/c^2/x/(-d*x^3+8*c)-1/648*d^(1/3 
)*arctan(3^(1/2)*c^(1/6)*(c^(1/3)+d^(1/3)*x)/(d*x^3+c)^(1/2))*3^(1/2)/c^(1 
7/6)+1/648*d^(1/3)*arctanh(1/3*(c^(1/3)+d^(1/3)*x)^2/c^(1/6)/(d*x^3+c)^(1/ 
2))/c^(17/6)-1/648*d^(1/3)*arctanh(1/3*(d*x^3+c)^(1/2)/c^(1/2))/c^(17/6)-7 
/864*(1/2*6^(1/2)-1/2*2^(1/2))*d^(1/3)*(c^(1/3)+d^(1/3)*x)*((c^(2/3)-c^(1/ 
3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)*Ellipti 
cE(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x),I*3^(1/ 
2)+2*I)*3^(1/4)/c^(8/3)/(c^(1/3)*(c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+ 
d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^(1/2)+7/1296*d^(1/3)*(c^(1/3)+d^(1/3)*x)*((c 
^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^( 
1/2)*EllipticF(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3 
)*x),I*3^(1/2)+2*I)*2^(1/2)*3^(3/4)/c^(8/3)/(c^(1/3)*(c^(1/3)+d^(1/3)*x)/( 
(1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 11.17 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.27 \[ \int \frac {1}{x^2 \left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {-80 c \left (54 c^2+47 c d x^3-7 d^2 x^6\right )+200 c d x^3 \left (8 c-d x^3\right ) \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )+7 d^2 x^6 \left (-8 c+d x^3\right ) \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{34560 c^4 \sqrt {c+d x^3} \left (8 c x-d x^4\right )} \] Input:

Integrate[1/(x^2*(8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]
 

Output:

(-80*c*(54*c^2 + 47*c*d*x^3 - 7*d^2*x^6) + 200*c*d*x^3*(8*c - d*x^3)*Sqrt[ 
1 + (d*x^3)/c]*AppellF1[2/3, 1/2, 1, 5/3, -((d*x^3)/c), (d*x^3)/(8*c)] + 7 
*d^2*x^6*(-8*c + d*x^3)*Sqrt[1 + (d*x^3)/c]*AppellF1[5/3, 1/2, 1, 8/3, -(( 
d*x^3)/c), (d*x^3)/(8*c)])/(34560*c^4*Sqrt[c + d*x^3]*(8*c*x - d*x^4))
 

Rubi [A] (verified)

Time = 1.82 (sec) , antiderivative size = 669, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {972, 27, 1053, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 972

\(\displaystyle \frac {\int \frac {d \left (5 d x^3+56 c\right )}{2 x^2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{216 c^2 d}+\frac {\sqrt {c+d x^3}}{216 c^2 x \left (8 c-d x^3\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {5 d x^3+56 c}{x^2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{432 c^2}+\frac {\sqrt {c+d x^3}}{216 c^2 x \left (8 c-d x^3\right )}\)

\(\Big \downarrow \) 1053

\(\displaystyle \frac {-\frac {\int -\frac {4 c d x \left (80 c-7 d x^3\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{8 c^2}-\frac {7 \sqrt {c+d x^3}}{c x}}{432 c^2}+\frac {\sqrt {c+d x^3}}{216 c^2 x \left (8 c-d x^3\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {d \int \frac {x \left (80 c-7 d x^3\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{2 c}-\frac {7 \sqrt {c+d x^3}}{c x}}{432 c^2}+\frac {\sqrt {c+d x^3}}{216 c^2 x \left (8 c-d x^3\right )}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {\frac {d \int \left (\frac {24 c x}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}+\frac {7 x}{\sqrt {d x^3+c}}\right )dx}{2 c}-\frac {7 \sqrt {c+d x^3}}{c x}}{432 c^2}+\frac {\sqrt {c+d x^3}}{216 c^2 x \left (8 c-d x^3\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {d \left (\frac {14 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {7 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt {3}\right )}{d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {4 \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{\sqrt {3} d^{2/3}}+\frac {4 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{3 d^{2/3}}-\frac {4 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{3 d^{2/3}}+\frac {14 \sqrt {c+d x^3}}{d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}\right )}{2 c}-\frac {7 \sqrt {c+d x^3}}{c x}}{432 c^2}+\frac {\sqrt {c+d x^3}}{216 c^2 x \left (8 c-d x^3\right )}\)

Input:

Int[1/(x^2*(8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]
 

Output:

Sqrt[c + d*x^3]/(216*c^2*x*(8*c - d*x^3)) + ((-7*Sqrt[c + d*x^3])/(c*x) + 
(d*((14*Sqrt[c + d*x^3])/(d^(2/3)*((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)) - ( 
4*c^(1/6)*ArcTan[(Sqrt[3]*c^(1/6)*(c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]]) 
/(Sqrt[3]*d^(2/3)) + (4*c^(1/6)*ArcTanh[(c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6) 
*Sqrt[c + d*x^3])])/(3*d^(2/3)) - (4*c^(1/6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sq 
rt[c])])/(3*d^(2/3)) - (7*3^(1/4)*Sqrt[2 - Sqrt[3]]*c^(1/3)*(c^(1/3) + d^( 
1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^ 
(1/3) + d^(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x) 
/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(d^(2/3)*Sqrt[(c^( 
1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c 
+ d*x^3]) + (14*Sqrt[2]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1 
/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Ellipt 
icF[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^ 
(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1 
/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3])))/(2*c))/( 
432*c^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 972
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x 
^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*n*(b*c - a*d)*(p + 
 1))   Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*( 
b*c - a*d)*(p + 1) + d*b*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{ 
a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] & 
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1053
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_ 
))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b 
*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^n*( 
m + 1))   Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) 
- e*(b*c + a*d)*(m + n + 1) - e*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2 
) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 
0] && LtQ[m, -1]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 3.11 (sec) , antiderivative size = 898, normalized size of antiderivative = 1.35

method result size
elliptic \(\text {Expression too large to display}\) \(898\)
risch \(\text {Expression too large to display}\) \(1758\)
default \(\text {Expression too large to display}\) \(1762\)

Input:

int(1/x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/1728/c^3*x^2*d*(d*x^3+c)^(1/2)/(-d*x^3+8*c)-1/64*(d*x^3+c)^(1/2)/c^3/x-7 
/1296*I/c^3*3^(1/2)*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2 
)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3) 
)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2 
/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3) 
)^(1/2)/(d*x^3+c)^(1/2)*((-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^( 
1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c 
*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/( 
-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2))+1/d*(-c*d^2) 
^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(- 
c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/ 
(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)))-1/972*I/c^ 
3/d^2*2^(1/2)*sum(1/_alpha*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(- 
c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/ 
3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d 
*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c 
)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alp 
ha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I 
*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2 
)^(1/3))^(1/2),-1/18/d*(2*I*(-c*d^2)^(1/3)*_alpha^2*3^(1/2)*d-I*(-c*d^2...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2391 vs. \(2 (472) = 944\).

Time = 0.60 (sec) , antiderivative size = 2391, normalized size of antiderivative = 3.60 \[ \int \frac {1}{x^2 \left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\text {Too large to display} \] Input:

integrate(1/x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")
 

Output:

-1/7776*(126*(d*x^4 - 8*c*x)*sqrt(d)*weierstrassZeta(0, -4*c/d, weierstras 
sPInverse(0, -4*c/d, x)) - (c^3*d*x^4 - 8*c^4*x + sqrt(-3)*(c^3*d*x^4 - 8* 
c^4*x))*(d^2/c^17)^(1/6)*log((d^4*x^9 + 318*c*d^3*x^6 + 1200*c^2*d^2*x^3 + 
 640*c^3*d - 9*(5*c^12*d^2*x^7 + 64*c^13*d*x^4 + 32*c^14*x + sqrt(-3)*(5*c 
^12*d^2*x^7 + 64*c^13*d*x^4 + 32*c^14*x))*(d^2/c^17)^(2/3) + 3*sqrt(d*x^3 
+ c)*(6*(5*c^15*d*x^5 + 32*c^16*x^2 - sqrt(-3)*(5*c^15*d*x^5 + 32*c^16*x^2 
))*(d^2/c^17)^(5/6) - 2*(7*c^9*d^2*x^6 + 152*c^10*d*x^3 + 64*c^11)*sqrt(d^ 
2/c^17) + (c^3*d^3*x^7 + 80*c^4*d^2*x^4 + 160*c^5*d*x + sqrt(-3)*(c^3*d^3* 
x^7 + 80*c^4*d^2*x^4 + 160*c^5*d*x))*(d^2/c^17)^(1/6)) - 9*(c^6*d^3*x^8 + 
38*c^7*d^2*x^5 + 64*c^8*d*x^2 - sqrt(-3)*(c^6*d^3*x^8 + 38*c^7*d^2*x^5 + 6 
4*c^8*d*x^2))*(d^2/c^17)^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 
512*c^3)) + (c^3*d*x^4 - 8*c^4*x + sqrt(-3)*(c^3*d*x^4 - 8*c^4*x))*(d^2/c^ 
17)^(1/6)*log((d^4*x^9 + 318*c*d^3*x^6 + 1200*c^2*d^2*x^3 + 640*c^3*d - 9* 
(5*c^12*d^2*x^7 + 64*c^13*d*x^4 + 32*c^14*x + sqrt(-3)*(5*c^12*d^2*x^7 + 6 
4*c^13*d*x^4 + 32*c^14*x))*(d^2/c^17)^(2/3) - 3*sqrt(d*x^3 + c)*(6*(5*c^15 
*d*x^5 + 32*c^16*x^2 - sqrt(-3)*(5*c^15*d*x^5 + 32*c^16*x^2))*(d^2/c^17)^( 
5/6) - 2*(7*c^9*d^2*x^6 + 152*c^10*d*x^3 + 64*c^11)*sqrt(d^2/c^17) + (c^3* 
d^3*x^7 + 80*c^4*d^2*x^4 + 160*c^5*d*x + sqrt(-3)*(c^3*d^3*x^7 + 80*c^4*d^ 
2*x^4 + 160*c^5*d*x))*(d^2/c^17)^(1/6)) - 9*(c^6*d^3*x^8 + 38*c^7*d^2*x^5 
+ 64*c^8*d*x^2 - sqrt(-3)*(c^6*d^3*x^8 + 38*c^7*d^2*x^5 + 64*c^8*d*x^2)...
 

Sympy [F]

\[ \int \frac {1}{x^2 \left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int \frac {1}{x^{2} \left (- 8 c + d x^{3}\right )^{2} \sqrt {c + d x^{3}}}\, dx \] Input:

integrate(1/x**2/(-d*x**3+8*c)**2/(d*x**3+c)**(1/2),x)
 

Output:

Integral(1/(x**2*(-8*c + d*x**3)**2*sqrt(c + d*x**3)), x)
 

Maxima [F]

\[ \int \frac {1}{x^2 \left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int { \frac {1}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}^{2} x^{2}} \,d x } \] Input:

integrate(1/x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)^2*x^2), x)
 

Giac [F]

\[ \int \frac {1}{x^2 \left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int { \frac {1}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}^{2} x^{2}} \,d x } \] Input:

integrate(1/x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)^2*x^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int \frac {1}{x^2\,\sqrt {d\,x^3+c}\,{\left (8\,c-d\,x^3\right )}^2} \,d x \] Input:

int(1/(x^2*(c + d*x^3)^(1/2)*(8*c - d*x^3)^2),x)
 

Output:

int(1/(x^2*(c + d*x^3)^(1/2)*(8*c - d*x^3)^2), x)
 

Reduce [F]

\[ \int \frac {1}{x^2 \left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {-2 \sqrt {d \,x^{3}+c}+40 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{4}}{d^{3} x^{9}-15 c \,d^{2} x^{6}+48 c^{2} d \,x^{3}+64 c^{3}}d x \right ) c \,d^{2} x -5 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{4}}{d^{3} x^{9}-15 c \,d^{2} x^{6}+48 c^{2} d \,x^{3}+64 c^{3}}d x \right ) d^{3} x^{4}+128 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{d^{3} x^{9}-15 c \,d^{2} x^{6}+48 c^{2} d \,x^{3}+64 c^{3}}d x \right ) c^{2} d x -16 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{d^{3} x^{9}-15 c \,d^{2} x^{6}+48 c^{2} d \,x^{3}+64 c^{3}}d x \right ) c \,d^{2} x^{4}}{16 c^{2} x \left (-d \,x^{3}+8 c \right )} \] Input:

int(1/x^2/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x)
 

Output:

( - 2*sqrt(c + d*x**3) + 40*int((sqrt(c + d*x**3)*x**4)/(64*c**3 + 48*c**2 
*d*x**3 - 15*c*d**2*x**6 + d**3*x**9),x)*c*d**2*x - 5*int((sqrt(c + d*x**3 
)*x**4)/(64*c**3 + 48*c**2*d*x**3 - 15*c*d**2*x**6 + d**3*x**9),x)*d**3*x* 
*4 + 128*int((sqrt(c + d*x**3)*x)/(64*c**3 + 48*c**2*d*x**3 - 15*c*d**2*x* 
*6 + d**3*x**9),x)*c**2*d*x - 16*int((sqrt(c + d*x**3)*x)/(64*c**3 + 48*c* 
*2*d*x**3 - 15*c*d**2*x**6 + d**3*x**9),x)*c*d**2*x**4)/(16*c**2*x*(8*c - 
d*x**3))