\(\int \frac {x^3 (c+d x^3)^{3/2}}{(a+b x^3)^2} \, dx\) [648]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 65 \[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\frac {c x^4 \sqrt {c+d x^3} \operatorname {AppellF1}\left (\frac {4}{3},2,-\frac {3}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{4 a^2 \sqrt {1+\frac {d x^3}{c}}} \] Output:

1/4*c*x^4*(d*x^3+c)^(1/2)*AppellF1(4/3,2,-3/2,7/3,-b*x^3/a,-d*x^3/c)/a^2/( 
1+d*x^3/c)^(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(338\) vs. \(2(65)=130\).

Time = 10.32 (sec) , antiderivative size = 338, normalized size of antiderivative = 5.20 \[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\frac {x^4 \left (\frac {d (43 b c-55 a d) \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}{a}+\frac {8 \left (-8 a c d \left (11 a d+b \left (c+6 d x^3\right )\right ) \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )-3 \left (c+d x^3\right ) \left (5 b c-11 a d-6 b d x^3\right ) \left (2 b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},2,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )\right )}{\left (a+b x^3\right ) \left (-8 a c \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+3 x^3 \left (2 b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},2,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )\right )}\right )}{120 b^2 \sqrt {c+d x^3}} \] Input:

Integrate[(x^3*(c + d*x^3)^(3/2))/(a + b*x^3)^2,x]
 

Output:

(x^4*((d*(43*b*c - 55*a*d)*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1/2, 1, 7/3, 
-((d*x^3)/c), -((b*x^3)/a)])/a + (8*(-8*a*c*d*(11*a*d + b*(c + 6*d*x^3))*A 
ppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)] - 3*(c + d*x^3)*(5*b 
*c - 11*a*d - 6*b*d*x^3)*(2*b*c*AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), - 
((b*x^3)/a)] + a*d*AppellF1[4/3, 3/2, 1, 7/3, -((d*x^3)/c), -((b*x^3)/a)]) 
))/((a + b*x^3)*(-8*a*c*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3) 
/a)] + 3*x^3*(2*b*c*AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), -((b*x^3)/a)] 
 + a*d*AppellF1[4/3, 3/2, 1, 7/3, -((d*x^3)/c), -((b*x^3)/a)])))))/(120*b^ 
2*Sqrt[c + d*x^3])
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \frac {c \sqrt {c+d x^3} \int \frac {x^3 \left (\frac {d x^3}{c}+1\right )^{3/2}}{\left (b x^3+a\right )^2}dx}{\sqrt {\frac {d x^3}{c}+1}}\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {c x^4 \sqrt {c+d x^3} \operatorname {AppellF1}\left (\frac {4}{3},2,-\frac {3}{2},\frac {7}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{4 a^2 \sqrt {\frac {d x^3}{c}+1}}\)

Input:

Int[(x^3*(c + d*x^3)^(3/2))/(a + b*x^3)^2,x]
 

Output:

(c*x^4*Sqrt[c + d*x^3]*AppellF1[4/3, 2, -3/2, 7/3, -((b*x^3)/a), -((d*x^3) 
/c)])/(4*a^2*Sqrt[1 + (d*x^3)/c])
 

Defintions of rubi rules used

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 4.67 (sec) , antiderivative size = 808, normalized size of antiderivative = 12.43

method result size
elliptic \(\text {Expression too large to display}\) \(808\)
risch \(\text {Expression too large to display}\) \(1563\)
default \(\text {Expression too large to display}\) \(1587\)

Input:

int(x^3*(d*x^3+c)^(3/2)/(b*x^3+a)^2,x,method=_RETURNVERBOSE)
 

Output:

1/3*(a*d-b*c)*x/b^2*(d*x^3+c)^(1/2)/(b*x^3+a)+2/5*x/b^2*d*(d*x^3+c)^(1/2)- 
2/3*I*(-11/6*(a*d-b*c)*d/b^3-2/5*c*d/b^2)*3^(1/2)/d*(-c*d^2)^(1/3)*(I*(x+1 
/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/ 
3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*( 
-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2) 
^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*EllipticF(1/3*3^(1 
/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/( 
-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/ 
2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2))+1/18*I/b^3/d^2*2^(1/2)*sum((-11*a^2* 
d^2+13*a*b*c*d-2*b^2*c^2)/_alpha^2/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+ 
1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*( 
x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)* 
(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/ 
3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c 
*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*Ellipti 
cPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)) 
*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1/2*b/d*(2*I*(-c*d^2)^(1/3)*_alpha^2*3^(1 
/2)*d-I*(-c*d^2)^(2/3)*_alpha*3^(1/2)+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alph 
a-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2* 
I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\text {Timed out} \] Input:

integrate(x^3*(d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int \frac {x^{3} \left (c + d x^{3}\right )^{\frac {3}{2}}}{\left (a + b x^{3}\right )^{2}}\, dx \] Input:

integrate(x**3*(d*x**3+c)**(3/2)/(b*x**3+a)**2,x)
                                                                                    
                                                                                    
 

Output:

Integral(x**3*(c + d*x**3)**(3/2)/(a + b*x**3)**2, x)
 

Maxima [F]

\[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int { \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}} x^{3}}{{\left (b x^{3} + a\right )}^{2}} \,d x } \] Input:

integrate(x^3*(d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="maxima")
 

Output:

integrate((d*x^3 + c)^(3/2)*x^3/(b*x^3 + a)^2, x)
 

Giac [F]

\[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int { \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}} x^{3}}{{\left (b x^{3} + a\right )}^{2}} \,d x } \] Input:

integrate(x^3*(d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="giac")
 

Output:

integrate((d*x^3 + c)^(3/2)*x^3/(b*x^3 + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int \frac {x^3\,{\left (d\,x^3+c\right )}^{3/2}}{{\left (b\,x^3+a\right )}^2} \,d x \] Input:

int((x^3*(c + d*x^3)^(3/2))/(a + b*x^3)^2,x)
 

Output:

int((x^3*(c + d*x^3)^(3/2))/(a + b*x^3)^2, x)
 

Reduce [F]

\[ \int \frac {x^3 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\text {too large to display} \] Input:

int(x^3*(d*x^3+c)^(3/2)/(b*x^3+a)^2,x)
 

Output:

( - 16*sqrt(c + d*x**3)*a*c*d*x + 10*sqrt(c + d*x**3)*a*d**2*x**4 + 10*sqr 
t(c + d*x**3)*b*c**2*x - 8*sqrt(c + d*x**3)*b*c*d*x**4 + 80*int(sqrt(c + d 
*x**3)/(5*a**3*c*d + 5*a**3*d**2*x**3 - 4*a**2*b*c**2 + 6*a**2*b*c*d*x**3 
+ 10*a**2*b*d**2*x**6 - 8*a*b**2*c**2*x**3 - 3*a*b**2*c*d*x**6 + 5*a*b**2* 
d**2*x**9 - 4*b**3*c**2*x**6 - 4*b**3*c*d*x**9),x)*a**4*c**2*d**2 - 114*in 
t(sqrt(c + d*x**3)/(5*a**3*c*d + 5*a**3*d**2*x**3 - 4*a**2*b*c**2 + 6*a**2 
*b*c*d*x**3 + 10*a**2*b*d**2*x**6 - 8*a*b**2*c**2*x**3 - 3*a*b**2*c*d*x**6 
 + 5*a*b**2*d**2*x**9 - 4*b**3*c**2*x**6 - 4*b**3*c*d*x**9),x)*a**3*b*c**3 
*d + 80*int(sqrt(c + d*x**3)/(5*a**3*c*d + 5*a**3*d**2*x**3 - 4*a**2*b*c** 
2 + 6*a**2*b*c*d*x**3 + 10*a**2*b*d**2*x**6 - 8*a*b**2*c**2*x**3 - 3*a*b** 
2*c*d*x**6 + 5*a*b**2*d**2*x**9 - 4*b**3*c**2*x**6 - 4*b**3*c*d*x**9),x)*a 
**3*b*c**2*d**2*x**3 + 40*int(sqrt(c + d*x**3)/(5*a**3*c*d + 5*a**3*d**2*x 
**3 - 4*a**2*b*c**2 + 6*a**2*b*c*d*x**3 + 10*a**2*b*d**2*x**6 - 8*a*b**2*c 
**2*x**3 - 3*a*b**2*c*d*x**6 + 5*a*b**2*d**2*x**9 - 4*b**3*c**2*x**6 - 4*b 
**3*c*d*x**9),x)*a**2*b**2*c**4 - 114*int(sqrt(c + d*x**3)/(5*a**3*c*d + 5 
*a**3*d**2*x**3 - 4*a**2*b*c**2 + 6*a**2*b*c*d*x**3 + 10*a**2*b*d**2*x**6 
- 8*a*b**2*c**2*x**3 - 3*a*b**2*c*d*x**6 + 5*a*b**2*d**2*x**9 - 4*b**3*c** 
2*x**6 - 4*b**3*c*d*x**9),x)*a**2*b**2*c**3*d*x**3 + 40*int(sqrt(c + d*x** 
3)/(5*a**3*c*d + 5*a**3*d**2*x**3 - 4*a**2*b*c**2 + 6*a**2*b*c*d*x**3 + 10 
*a**2*b*d**2*x**6 - 8*a*b**2*c**2*x**3 - 3*a*b**2*c*d*x**6 + 5*a*b**2*d...