\(\int \frac {(c+d x^3)^{3/2}}{(a+b x^3)^2} \, dx\) [650]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 60 \[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\frac {c x \sqrt {c+d x^3} \operatorname {AppellF1}\left (\frac {1}{3},2,-\frac {3}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a^2 \sqrt {1+\frac {d x^3}{c}}} \] Output:

c*x*(d*x^3+c)^(1/2)*AppellF1(1/3,2,-3/2,4/3,-b*x^3/a,-d*x^3/c)/a^2/(1+d*x^ 
3/c)^(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(339\) vs. \(2(60)=120\).

Time = 10.26 (sec) , antiderivative size = 339, normalized size of antiderivative = 5.65 \[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\frac {x \left (d (b c+5 a d) x^3 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+\frac {a \left (-64 a c \left (-a d^2 x^3+b c \left (3 c+d x^3\right )\right ) \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+24 (b c-a d) x^3 \left (c+d x^3\right ) \left (2 b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},2,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )\right )}{\left (a+b x^3\right ) \left (-8 a c \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+3 x^3 \left (2 b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},2,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )\right )}\right )}{24 a^2 b \sqrt {c+d x^3}} \] Input:

Integrate[(c + d*x^3)^(3/2)/(a + b*x^3)^2,x]
 

Output:

(x*(d*(b*c + 5*a*d)*x^3*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1/2, 1, 7/3, -(( 
d*x^3)/c), -((b*x^3)/a)] + (a*(-64*a*c*(-(a*d^2*x^3) + b*c*(3*c + d*x^3))* 
AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)] + 24*(b*c - a*d)*x^ 
3*(c + d*x^3)*(2*b*c*AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), -((b*x^3)/a) 
] + a*d*AppellF1[4/3, 3/2, 1, 7/3, -((d*x^3)/c), -((b*x^3)/a)])))/((a + b* 
x^3)*(-8*a*c*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)] + 3*x^ 
3*(2*b*c*AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), -((b*x^3)/a)] + a*d*Appe 
llF1[4/3, 3/2, 1, 7/3, -((d*x^3)/c), -((b*x^3)/a)])))))/(24*a^2*b*Sqrt[c + 
 d*x^3])
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {937, 936}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx\)

\(\Big \downarrow \) 937

\(\displaystyle \frac {c \sqrt {c+d x^3} \int \frac {\left (\frac {d x^3}{c}+1\right )^{3/2}}{\left (b x^3+a\right )^2}dx}{\sqrt {\frac {d x^3}{c}+1}}\)

\(\Big \downarrow \) 936

\(\displaystyle \frac {c x \sqrt {c+d x^3} \operatorname {AppellF1}\left (\frac {1}{3},2,-\frac {3}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a^2 \sqrt {\frac {d x^3}{c}+1}}\)

Input:

Int[(c + d*x^3)^(3/2)/(a + b*x^3)^2,x]
 

Output:

(c*x*Sqrt[c + d*x^3]*AppellF1[1/3, 2, -3/2, 4/3, -((b*x^3)/a), -((d*x^3)/c 
)])/(a^2*Sqrt[1 + (d*x^3)/c])
 

Defintions of rubi rules used

rule 936
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^p*c^q*x*AppellF1[1/n, -p, -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c) 
], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] 
 && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 937
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]) 
  Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, p, q 
}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 1.14 (sec) , antiderivative size = 801, normalized size of antiderivative = 13.35

method result size
default \(\text {Expression too large to display}\) \(801\)
elliptic \(\text {Expression too large to display}\) \(801\)

Input:

int((d*x^3+c)^(3/2)/(b*x^3+a)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/3*(a*d-b*c)/b/a*x*(d*x^3+c)^(1/2)/(b*x^3+a)-2/3*I*(d^2/b^2-1/6/b^2*d*(a 
*d-b*c)/a)*3^(1/2)/d*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/ 
2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3 
))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/ 
2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3 
))^(1/2)/(d*x^3+c)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)- 
1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2) 
/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^ 
(1/2))+1/18*I/a/b^2/d^2*2^(1/2)*sum((5*a^2*d^2-a*b*c*d-4*b^2*c^2)/_alpha^2 
/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c 
*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2) 
^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c* 
d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d 
^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2 
)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^ 
2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1 
/2*b/d*(2*I*(-c*d^2)^(1/3)*_alpha^2*3^(1/2)*d-I*(-c*d^2)^(2/3)*_alpha*3^(1 
/2)+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(- 
c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2) 
),_alpha=RootOf(_Z^3*b+a))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\text {Timed out} \] Input:

integrate((d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int \frac {\left (c + d x^{3}\right )^{\frac {3}{2}}}{\left (a + b x^{3}\right )^{2}}\, dx \] Input:

integrate((d*x**3+c)**(3/2)/(b*x**3+a)**2,x)
 

Output:

Integral((c + d*x**3)**(3/2)/(a + b*x**3)**2, x)
 

Maxima [F]

\[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int { \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}}}{{\left (b x^{3} + a\right )}^{2}} \,d x } \] Input:

integrate((d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="maxima")
 

Output:

integrate((d*x^3 + c)^(3/2)/(b*x^3 + a)^2, x)
 

Giac [F]

\[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int { \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}}}{{\left (b x^{3} + a\right )}^{2}} \,d x } \] Input:

integrate((d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="giac")
 

Output:

integrate((d*x^3 + c)^(3/2)/(b*x^3 + a)^2, x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int \frac {{\left (d\,x^3+c\right )}^{3/2}}{{\left (b\,x^3+a\right )}^2} \,d x \] Input:

int((c + d*x^3)^(3/2)/(a + b*x^3)^2,x)
 

Output:

int((c + d*x^3)^(3/2)/(a + b*x^3)^2, x)
 

Reduce [F]

\[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx =\text {Too large to display} \] Input:

int((d*x^3+c)^(3/2)/(b*x^3+a)^2,x)
 

Output:

(4*sqrt(c + d*x**3)*c*d*x + 5*int(sqrt(c + d*x**3)/(5*a**3*c*d + 5*a**3*d* 
*2*x**3 - 4*a**2*b*c**2 + 6*a**2*b*c*d*x**3 + 10*a**2*b*d**2*x**6 - 8*a*b* 
*2*c**2*x**3 - 3*a*b**2*c*d*x**6 + 5*a*b**2*d**2*x**9 - 4*b**3*c**2*x**6 - 
 4*b**3*c*d*x**9),x)*a**3*c**2*d**2 - 24*int(sqrt(c + d*x**3)/(5*a**3*c*d 
+ 5*a**3*d**2*x**3 - 4*a**2*b*c**2 + 6*a**2*b*c*d*x**3 + 10*a**2*b*d**2*x* 
*6 - 8*a*b**2*c**2*x**3 - 3*a*b**2*c*d*x**6 + 5*a*b**2*d**2*x**9 - 4*b**3* 
c**2*x**6 - 4*b**3*c*d*x**9),x)*a**2*b*c**3*d + 5*int(sqrt(c + d*x**3)/(5* 
a**3*c*d + 5*a**3*d**2*x**3 - 4*a**2*b*c**2 + 6*a**2*b*c*d*x**3 + 10*a**2* 
b*d**2*x**6 - 8*a*b**2*c**2*x**3 - 3*a*b**2*c*d*x**6 + 5*a*b**2*d**2*x**9 
- 4*b**3*c**2*x**6 - 4*b**3*c*d*x**9),x)*a**2*b*c**2*d**2*x**3 + 16*int(sq 
rt(c + d*x**3)/(5*a**3*c*d + 5*a**3*d**2*x**3 - 4*a**2*b*c**2 + 6*a**2*b*c 
*d*x**3 + 10*a**2*b*d**2*x**6 - 8*a*b**2*c**2*x**3 - 3*a*b**2*c*d*x**6 + 5 
*a*b**2*d**2*x**9 - 4*b**3*c**2*x**6 - 4*b**3*c*d*x**9),x)*a*b**2*c**4 - 2 
4*int(sqrt(c + d*x**3)/(5*a**3*c*d + 5*a**3*d**2*x**3 - 4*a**2*b*c**2 + 6* 
a**2*b*c*d*x**3 + 10*a**2*b*d**2*x**6 - 8*a*b**2*c**2*x**3 - 3*a*b**2*c*d* 
x**6 + 5*a*b**2*d**2*x**9 - 4*b**3*c**2*x**6 - 4*b**3*c*d*x**9),x)*a*b**2* 
c**3*d*x**3 + 16*int(sqrt(c + d*x**3)/(5*a**3*c*d + 5*a**3*d**2*x**3 - 4*a 
**2*b*c**2 + 6*a**2*b*c*d*x**3 + 10*a**2*b*d**2*x**6 - 8*a*b**2*c**2*x**3 
- 3*a*b**2*c*d*x**6 + 5*a*b**2*d**2*x**9 - 4*b**3*c**2*x**6 - 4*b**3*c*d*x 
**9),x)*b**3*c**4*x**3 + 25*int((sqrt(c + d*x**3)*x**6)/(5*a**3*c*d + 5...