\(\int \frac {1}{x^2 (a+b x^3)^2 \sqrt {c+d x^3}} \, dx\) [661]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 62 \[ \int \frac {1}{x^2 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=-\frac {\sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (-\frac {1}{3},2,\frac {1}{2},\frac {2}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a^2 x \sqrt {c+d x^3}} \] Output:

-(1+d*x^3/c)^(1/2)*AppellF1(-1/3,2,1/2,2/3,-b*x^3/a,-d*x^3/c)/a^2/x/(d*x^3 
+c)^(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(226\) vs. \(2(62)=124\).

Time = 10.20 (sec) , antiderivative size = 226, normalized size of antiderivative = 3.65 \[ \int \frac {1}{x^2 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {20 a \left (c+d x^3\right ) \left (3 a^2 d-4 b^2 c x^3-3 a b \left (c-d x^3\right )\right )-5 \left (8 b^2 c^2-15 a b c d+3 a^2 d^2\right ) x^3 \left (a+b x^3\right ) \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+2 b d (4 b c-3 a d) x^6 \left (a+b x^3\right ) \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )}{60 a^3 c (b c-a d) x \left (a+b x^3\right ) \sqrt {c+d x^3}} \] Input:

Integrate[1/(x^2*(a + b*x^3)^2*Sqrt[c + d*x^3]),x]
 

Output:

(20*a*(c + d*x^3)*(3*a^2*d - 4*b^2*c*x^3 - 3*a*b*(c - d*x^3)) - 5*(8*b^2*c 
^2 - 15*a*b*c*d + 3*a^2*d^2)*x^3*(a + b*x^3)*Sqrt[1 + (d*x^3)/c]*AppellF1[ 
2/3, 1/2, 1, 5/3, -((d*x^3)/c), -((b*x^3)/a)] + 2*b*d*(4*b*c - 3*a*d)*x^6* 
(a + b*x^3)*Sqrt[1 + (d*x^3)/c]*AppellF1[5/3, 1/2, 1, 8/3, -((d*x^3)/c), - 
((b*x^3)/a)])/(60*a^3*c*(b*c - a*d)*x*(a + b*x^3)*Sqrt[c + d*x^3])
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \frac {\sqrt {\frac {d x^3}{c}+1} \int \frac {1}{x^2 \left (b x^3+a\right )^2 \sqrt {\frac {d x^3}{c}+1}}dx}{\sqrt {c+d x^3}}\)

\(\Big \downarrow \) 1012

\(\displaystyle -\frac {\sqrt {\frac {d x^3}{c}+1} \operatorname {AppellF1}\left (-\frac {1}{3},2,\frac {1}{2},\frac {2}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a^2 x \sqrt {c+d x^3}}\)

Input:

Int[1/(x^2*(a + b*x^3)^2*Sqrt[c + d*x^3]),x]
 

Output:

-((Sqrt[1 + (d*x^3)/c]*AppellF1[-1/3, 2, 1/2, 2/3, -((b*x^3)/a), -((d*x^3) 
/c)])/(a^2*x*Sqrt[c + d*x^3]))
 

Defintions of rubi rules used

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 4.49 (sec) , antiderivative size = 963, normalized size of antiderivative = 15.53

method result size
elliptic \(\text {Expression too large to display}\) \(963\)
default \(\text {Expression too large to display}\) \(1818\)
risch \(\text {Expression too large to display}\) \(1819\)

Input:

int(1/x^2/(b*x^3+a)^2/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/3/(a*d-b*c)/a^2*b^2*x^2*(d*x^3+c)^(1/2)/(b*x^3+a)-1/c/a^2*(d*x^3+c)^(1/2 
)/x-2/3*I*(-1/6*d*b/(a*d-b*c)/a^2+1/2*d/c/a^2)*3^(1/2)/d*(-c*d^2)^(1/3)*(I 
*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2 
)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2 
)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c 
*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*((-3/2/d*(-c* 
d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2 
/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3) 
)^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d 
*(-c*d^2)^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/ 
2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3 
))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/ 
d*(-c*d^2)^(1/3)))^(1/2)))+1/18*I/a^2/d^2*b*2^(1/2)*sum((11*a*d-8*b*c)/(a* 
d-b*c)^2/_alpha*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3 
)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c 
*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2) 
*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I* 
(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(- 
c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*( 
-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\text {Timed out} \] Input:

integrate(1/x^2/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{x^2 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int \frac {1}{x^{2} \left (a + b x^{3}\right )^{2} \sqrt {c + d x^{3}}}\, dx \] Input:

integrate(1/x**2/(b*x**3+a)**2/(d*x**3+c)**(1/2),x)
                                                                                    
                                                                                    
 

Output:

Integral(1/(x**2*(a + b*x**3)**2*sqrt(c + d*x**3)), x)
 

Maxima [F]

\[ \int \frac {1}{x^2 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{2} \sqrt {d x^{3} + c} x^{2}} \,d x } \] Input:

integrate(1/x^2/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*x^3 + a)^2*sqrt(d*x^3 + c)*x^2), x)
 

Giac [F]

\[ \int \frac {1}{x^2 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{2} \sqrt {d x^{3} + c} x^{2}} \,d x } \] Input:

integrate(1/x^2/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/((b*x^3 + a)^2*sqrt(d*x^3 + c)*x^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int \frac {1}{x^2\,{\left (b\,x^3+a\right )}^2\,\sqrt {d\,x^3+c}} \,d x \] Input:

int(1/(x^2*(a + b*x^3)^2*(c + d*x^3)^(1/2)),x)
 

Output:

int(1/(x^2*(a + b*x^3)^2*(c + d*x^3)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{x^2 \left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {-2 \sqrt {d \,x^{3}+c}-5 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{4}}{b^{2} d \,x^{9}+2 a b d \,x^{6}+b^{2} c \,x^{6}+a^{2} d \,x^{3}+2 a b c \,x^{3}+a^{2} c}d x \right ) a b d x -5 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{4}}{b^{2} d \,x^{9}+2 a b d \,x^{6}+b^{2} c \,x^{6}+a^{2} d \,x^{3}+2 a b c \,x^{3}+a^{2} c}d x \right ) b^{2} d \,x^{4}+\left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{b^{2} d \,x^{9}+2 a b d \,x^{6}+b^{2} c \,x^{6}+a^{2} d \,x^{3}+2 a b c \,x^{3}+a^{2} c}d x \right ) a^{2} d x -8 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{b^{2} d \,x^{9}+2 a b d \,x^{6}+b^{2} c \,x^{6}+a^{2} d \,x^{3}+2 a b c \,x^{3}+a^{2} c}d x \right ) a b c x +\left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{b^{2} d \,x^{9}+2 a b d \,x^{6}+b^{2} c \,x^{6}+a^{2} d \,x^{3}+2 a b c \,x^{3}+a^{2} c}d x \right ) a b d \,x^{4}-8 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{b^{2} d \,x^{9}+2 a b d \,x^{6}+b^{2} c \,x^{6}+a^{2} d \,x^{3}+2 a b c \,x^{3}+a^{2} c}d x \right ) b^{2} c \,x^{4}}{2 a c x \left (b \,x^{3}+a \right )} \] Input:

int(1/x^2/(b*x^3+a)^2/(d*x^3+c)^(1/2),x)
 

Output:

( - 2*sqrt(c + d*x**3) - 5*int((sqrt(c + d*x**3)*x**4)/(a**2*c + a**2*d*x* 
*3 + 2*a*b*c*x**3 + 2*a*b*d*x**6 + b**2*c*x**6 + b**2*d*x**9),x)*a*b*d*x - 
 5*int((sqrt(c + d*x**3)*x**4)/(a**2*c + a**2*d*x**3 + 2*a*b*c*x**3 + 2*a* 
b*d*x**6 + b**2*c*x**6 + b**2*d*x**9),x)*b**2*d*x**4 + int((sqrt(c + d*x** 
3)*x)/(a**2*c + a**2*d*x**3 + 2*a*b*c*x**3 + 2*a*b*d*x**6 + b**2*c*x**6 + 
b**2*d*x**9),x)*a**2*d*x - 8*int((sqrt(c + d*x**3)*x)/(a**2*c + a**2*d*x** 
3 + 2*a*b*c*x**3 + 2*a*b*d*x**6 + b**2*c*x**6 + b**2*d*x**9),x)*a*b*c*x + 
int((sqrt(c + d*x**3)*x)/(a**2*c + a**2*d*x**3 + 2*a*b*c*x**3 + 2*a*b*d*x* 
*6 + b**2*c*x**6 + b**2*d*x**9),x)*a*b*d*x**4 - 8*int((sqrt(c + d*x**3)*x) 
/(a**2*c + a**2*d*x**3 + 2*a*b*c*x**3 + 2*a*b*d*x**6 + b**2*c*x**6 + b**2* 
d*x**9),x)*b**2*c*x**4)/(2*a*c*x*(a + b*x**3))