\(\int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx\) [676]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 159 \[ \int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx=\frac {\sqrt [3]{a+b x^3}}{d}+\frac {\sqrt [3]{b c-a d} \arctan \left (\frac {1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt {3}}\right )}{\sqrt {3} d^{4/3}}+\frac {\sqrt [3]{b c-a d} \log \left (c+d x^3\right )}{6 d^{4/3}}-\frac {\sqrt [3]{b c-a d} \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 d^{4/3}} \] Output:

(b*x^3+a)^(1/3)/d+1/3*(-a*d+b*c)^(1/3)*arctan(1/3*(1-2*d^(1/3)*(b*x^3+a)^( 
1/3)/(-a*d+b*c)^(1/3))*3^(1/2))*3^(1/2)/d^(4/3)+1/6*(-a*d+b*c)^(1/3)*ln(d* 
x^3+c)/d^(4/3)-1/2*(-a*d+b*c)^(1/3)*ln((-a*d+b*c)^(1/3)+d^(1/3)*(b*x^3+a)^ 
(1/3))/d^(4/3)
 

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.29 \[ \int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx=\frac {6 \sqrt [3]{d} \sqrt [3]{a+b x^3}+2 \sqrt {3} \sqrt [3]{b c-a d} \arctan \left (\frac {1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt {3}}\right )-2 \sqrt [3]{b c-a d} \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )+\sqrt [3]{b c-a d} \log \left ((b c-a d)^{2/3}-\sqrt [3]{d} \sqrt [3]{b c-a d} \sqrt [3]{a+b x^3}+d^{2/3} \left (a+b x^3\right )^{2/3}\right )}{6 d^{4/3}} \] Input:

Integrate[(x^2*(a + b*x^3)^(1/3))/(c + d*x^3),x]
 

Output:

(6*d^(1/3)*(a + b*x^3)^(1/3) + 2*Sqrt[3]*(b*c - a*d)^(1/3)*ArcTan[(1 - (2* 
d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3))/Sqrt[3]] - 2*(b*c - a*d)^(1/ 
3)*Log[(b*c - a*d)^(1/3) + d^(1/3)*(a + b*x^3)^(1/3)] + (b*c - a*d)^(1/3)* 
Log[(b*c - a*d)^(2/3) - d^(1/3)*(b*c - a*d)^(1/3)*(a + b*x^3)^(1/3) + d^(2 
/3)*(a + b*x^3)^(2/3)])/(6*d^(4/3))
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.13, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {946, 60, 70, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx\)

\(\Big \downarrow \) 946

\(\displaystyle \frac {1}{3} \int \frac {\sqrt [3]{b x^3+a}}{d x^3+c}dx^3\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{3} \left (\frac {3 \sqrt [3]{a+b x^3}}{d}-\frac {(b c-a d) \int \frac {1}{\left (b x^3+a\right )^{2/3} \left (d x^3+c\right )}dx^3}{d}\right )\)

\(\Big \downarrow \) 70

\(\displaystyle \frac {1}{3} \left (\frac {3 \sqrt [3]{a+b x^3}}{d}-\frac {(b c-a d) \left (\frac {3 \int \frac {1}{x^6+\frac {(b c-a d)^{2/3}}{d^{2/3}}-\frac {\sqrt [3]{b c-a d} \sqrt [3]{b x^3+a}}{\sqrt [3]{d}}}d\sqrt [3]{b x^3+a}}{2 d^{2/3} \sqrt [3]{b c-a d}}+\frac {3 \int \frac {1}{\frac {\sqrt [3]{b c-a d}}{\sqrt [3]{d}}+\sqrt [3]{b x^3+a}}d\sqrt [3]{b x^3+a}}{2 \sqrt [3]{d} (b c-a d)^{2/3}}-\frac {\log \left (c+d x^3\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}\right )}{d}\right )\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{3} \left (\frac {3 \sqrt [3]{a+b x^3}}{d}-\frac {(b c-a d) \left (\frac {3 \int \frac {1}{x^6+\frac {(b c-a d)^{2/3}}{d^{2/3}}-\frac {\sqrt [3]{b c-a d} \sqrt [3]{b x^3+a}}{\sqrt [3]{d}}}d\sqrt [3]{b x^3+a}}{2 d^{2/3} \sqrt [3]{b c-a d}}-\frac {\log \left (c+d x^3\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac {3 \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}\right )}{d}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{3} \left (\frac {3 \sqrt [3]{a+b x^3}}{d}-\frac {(b c-a d) \left (\frac {3 \int \frac {1}{-x^6-3}d\left (1-\frac {2 \sqrt [3]{d} \sqrt [3]{b x^3+a}}{\sqrt [3]{b c-a d}}\right )}{\sqrt [3]{d} (b c-a d)^{2/3}}-\frac {\log \left (c+d x^3\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac {3 \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}\right )}{d}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{3} \left (\frac {3 \sqrt [3]{a+b x^3}}{d}-\frac {(b c-a d) \left (-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt {3}}\right )}{\sqrt [3]{d} (b c-a d)^{2/3}}-\frac {\log \left (c+d x^3\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac {3 \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}\right )}{d}\right )\)

Input:

Int[(x^2*(a + b*x^3)^(1/3))/(c + d*x^3),x]
 

Output:

((3*(a + b*x^3)^(1/3))/d - ((b*c - a*d)*(-((Sqrt[3]*ArcTan[(1 - (2*d^(1/3) 
*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3))/Sqrt[3]])/(d^(1/3)*(b*c - a*d)^(2/3 
))) - Log[c + d*x^3]/(2*d^(1/3)*(b*c - a*d)^(2/3)) + (3*Log[(b*c - a*d)^(1 
/3) + d^(1/3)*(a + b*x^3)^(1/3)])/(2*d^(1/3)*(b*c - a*d)^(2/3))))/d)/3
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 70
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2) 
, x] + (Simp[3/(2*b*q)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] + Simp[3/(2*b*q^2)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 946
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^n], 
x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m - n 
+ 1, 0]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
Maple [A] (verified)

Time = 1.70 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.32

method result size
pseudoelliptic \(\frac {\left (b \,x^{3}+a \right )^{\frac {1}{3}}}{d}+\frac {\ln \left (\left (b \,x^{3}+a \right )^{\frac {1}{3}}-\left (\frac {a d -b c}{d}\right )^{\frac {1}{3}}\right ) \left (a d -b c \right )}{3 d^{2} \left (\frac {a d -b c}{d}\right )^{\frac {2}{3}}}-\frac {\ln \left (\left (b \,x^{3}+a \right )^{\frac {2}{3}}+\left (\frac {a d -b c}{d}\right )^{\frac {1}{3}} \left (b \,x^{3}+a \right )^{\frac {1}{3}}+\left (\frac {a d -b c}{d}\right )^{\frac {2}{3}}\right ) \left (a d -b c \right )}{6 d^{2} \left (\frac {a d -b c}{d}\right )^{\frac {2}{3}}}-\frac {\sqrt {3}\, \arctan \left (\frac {2 \sqrt {3}\, \left (b \,x^{3}+a \right )^{\frac {1}{3}}}{3 \left (\frac {a d -b c}{d}\right )^{\frac {1}{3}}}+\frac {\sqrt {3}}{3}\right ) \left (a d -b c \right )}{3 d^{2} \left (\frac {a d -b c}{d}\right )^{\frac {2}{3}}}\) \(210\)

Input:

int(x^2*(b*x^3+a)^(1/3)/(d*x^3+c),x,method=_RETURNVERBOSE)
 

Output:

(b*x^3+a)^(1/3)/d+1/3/d^2/((a*d-b*c)/d)^(2/3)*ln((b*x^3+a)^(1/3)-((a*d-b*c 
)/d)^(1/3))*(a*d-b*c)-1/6/d^2/((a*d-b*c)/d)^(2/3)*ln((b*x^3+a)^(2/3)+((a*d 
-b*c)/d)^(1/3)*(b*x^3+a)^(1/3)+((a*d-b*c)/d)^(2/3))*(a*d-b*c)-1/3/d^2/((a* 
d-b*c)/d)^(2/3)*3^(1/2)*arctan(2/3*3^(1/2)/((a*d-b*c)/d)^(1/3)*(b*x^3+a)^( 
1/3)+1/3*3^(1/2))*(a*d-b*c)
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.30 \[ \int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx=-\frac {2 \, \sqrt {3} \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} \arctan \left (-\frac {2 \, \sqrt {3} {\left (b x^{3} + a\right )}^{\frac {1}{3}} d \left (-\frac {b c - a d}{d}\right )^{\frac {2}{3}} - \sqrt {3} {\left (b c - a d\right )}}{3 \, {\left (b c - a d\right )}}\right ) + \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} \log \left ({\left (b x^{3} + a\right )}^{\frac {2}{3}} + {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} + \left (-\frac {b c - a d}{d}\right )^{\frac {2}{3}}\right ) - 2 \, \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} \log \left ({\left (b x^{3} + a\right )}^{\frac {1}{3}} - \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}}\right ) - 6 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}}}{6 \, d} \] Input:

integrate(x^2*(b*x^3+a)^(1/3)/(d*x^3+c),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

-1/6*(2*sqrt(3)*(-(b*c - a*d)/d)^(1/3)*arctan(-1/3*(2*sqrt(3)*(b*x^3 + a)^ 
(1/3)*d*(-(b*c - a*d)/d)^(2/3) - sqrt(3)*(b*c - a*d))/(b*c - a*d)) + (-(b* 
c - a*d)/d)^(1/3)*log((b*x^3 + a)^(2/3) + (b*x^3 + a)^(1/3)*(-(b*c - a*d)/ 
d)^(1/3) + (-(b*c - a*d)/d)^(2/3)) - 2*(-(b*c - a*d)/d)^(1/3)*log((b*x^3 + 
 a)^(1/3) - (-(b*c - a*d)/d)^(1/3)) - 6*(b*x^3 + a)^(1/3))/d
 

Sympy [F]

\[ \int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx=\int \frac {x^{2} \sqrt [3]{a + b x^{3}}}{c + d x^{3}}\, dx \] Input:

integrate(x**2*(b*x**3+a)**(1/3)/(d*x**3+c),x)
 

Output:

Integral(x**2*(a + b*x**3)**(1/3)/(c + d*x**3), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^2*(b*x^3+a)^(1/3)/(d*x^3+c),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for m 
ore detail
 

Giac [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.40 \[ \int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx=\frac {{\left (b c - a d\right )} \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} \log \left ({\left | {\left (b x^{3} + a\right )}^{\frac {1}{3}} - \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} \right |}\right )}{3 \, {\left (b c d - a d^{2}\right )}} - \frac {\sqrt {3} {\left (-b c d^{2} + a d^{3}\right )}^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}} + \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}}}\right )}{3 \, d^{2}} + \frac {{\left (b x^{3} + a\right )}^{\frac {1}{3}}}{d} - \frac {{\left (-b c d^{2} + a d^{3}\right )}^{\frac {1}{3}} \log \left ({\left (b x^{3} + a\right )}^{\frac {2}{3}} + {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} + \left (-\frac {b c - a d}{d}\right )^{\frac {2}{3}}\right )}{6 \, d^{2}} \] Input:

integrate(x^2*(b*x^3+a)^(1/3)/(d*x^3+c),x, algorithm="giac")
 

Output:

1/3*(b*c - a*d)*(-(b*c - a*d)/d)^(1/3)*log(abs((b*x^3 + a)^(1/3) - (-(b*c 
- a*d)/d)^(1/3)))/(b*c*d - a*d^2) - 1/3*sqrt(3)*(-b*c*d^2 + a*d^3)^(1/3)*a 
rctan(1/3*sqrt(3)*(2*(b*x^3 + a)^(1/3) + (-(b*c - a*d)/d)^(1/3))/(-(b*c - 
a*d)/d)^(1/3))/d^2 + (b*x^3 + a)^(1/3)/d - 1/6*(-b*c*d^2 + a*d^3)^(1/3)*lo 
g((b*x^3 + a)^(2/3) + (b*x^3 + a)^(1/3)*(-(b*c - a*d)/d)^(1/3) + (-(b*c - 
a*d)/d)^(2/3))/d^2
 

Mupad [B] (verification not implemented)

Time = 3.14 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.57 \[ \int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx=\frac {{\left (b\,x^3+a\right )}^{1/3}}{d}+\frac {\ln \left ({\left (b\,x^3+a\right )}^{1/3}\,\left (3\,a\,d^2-3\,b\,c\,d\right )-\frac {{\left (a\,d-b\,c\right )}^{1/3}\,\left (9\,a\,d^3-9\,b\,c\,d^2\right )}{3\,d^{4/3}}\right )\,{\left (a\,d-b\,c\right )}^{1/3}}{3\,d^{4/3}}-\frac {\ln \left ({\left (b\,x^3+a\right )}^{1/3}\,\left (3\,a\,d^2-3\,b\,c\,d\right )+\frac {\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (a\,d-b\,c\right )}^{1/3}\,\left (9\,a\,d^3-9\,b\,c\,d^2\right )}{3\,d^{4/3}}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (a\,d-b\,c\right )}^{1/3}}{3\,d^{4/3}}+\frac {\ln \left ({\left (b\,x^3+a\right )}^{1/3}\,\left (3\,a\,d^2-3\,b\,c\,d\right )-\frac {\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )\,{\left (a\,d-b\,c\right )}^{1/3}\,\left (9\,a\,d^3-9\,b\,c\,d^2\right )}{d^{4/3}}\right )\,\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )\,{\left (a\,d-b\,c\right )}^{1/3}}{d^{4/3}} \] Input:

int((x^2*(a + b*x^3)^(1/3))/(c + d*x^3),x)
 

Output:

(a + b*x^3)^(1/3)/d + (log((a + b*x^3)^(1/3)*(3*a*d^2 - 3*b*c*d) - ((a*d - 
 b*c)^(1/3)*(9*a*d^3 - 9*b*c*d^2))/(3*d^(4/3)))*(a*d - b*c)^(1/3))/(3*d^(4 
/3)) - (log((a + b*x^3)^(1/3)*(3*a*d^2 - 3*b*c*d) + (((3^(1/2)*1i)/2 + 1/2 
)*(a*d - b*c)^(1/3)*(9*a*d^3 - 9*b*c*d^2))/(3*d^(4/3)))*((3^(1/2)*1i)/2 + 
1/2)*(a*d - b*c)^(1/3))/(3*d^(4/3)) + (log((a + b*x^3)^(1/3)*(3*a*d^2 - 3* 
b*c*d) - (((3^(1/2)*1i)/6 - 1/6)*(a*d - b*c)^(1/3)*(9*a*d^3 - 9*b*c*d^2))/ 
d^(4/3))*((3^(1/2)*1i)/6 - 1/6)*(a*d - b*c)^(1/3))/d^(4/3)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {x^2 \sqrt [3]{a+b x^3}}{c+d x^3} \, dx=\frac {\left (b \,x^{3}+a \right )^{\frac {1}{3}} a -\left (\int \frac {\left (b \,x^{3}+a \right )^{\frac {1}{3}} x^{5}}{b d \,x^{6}+a d \,x^{3}+b c \,x^{3}+a c}d x \right ) a b d +\left (\int \frac {\left (b \,x^{3}+a \right )^{\frac {1}{3}} x^{5}}{b d \,x^{6}+a d \,x^{3}+b c \,x^{3}+a c}d x \right ) b^{2} c}{b c} \] Input:

int(x^2*(b*x^3+a)^(1/3)/(d*x^3+c),x)
 

Output:

((a + b*x**3)**(1/3)*a - int(((a + b*x**3)**(1/3)*x**5)/(a*c + a*d*x**3 + 
b*c*x**3 + b*d*x**6),x)*a*b*d + int(((a + b*x**3)**(1/3)*x**5)/(a*c + a*d* 
x**3 + b*c*x**3 + b*d*x**6),x)*b**2*c)/(b*c)