\(\int \frac {x^{10}}{(1-x^3)^{4/3} (1+x^3)} \, dx\) [866]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 292 \[ \int \frac {x^{10}}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\frac {x^5}{2 \sqrt [3]{1-x^3}}+\frac {3}{4} x^2 \left (1-x^3\right )^{2/3}-\frac {\arctan \left (\frac {1-\frac {2 \sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{2 \sqrt [3]{2} \sqrt {3}}-\frac {\arctan \left (\frac {1+\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{4 \sqrt [3]{2} \sqrt {3}}-\frac {1}{2} x^2 \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {2}{3},\frac {5}{3},x^3\right )-\frac {\log \left ((1-x) (1+x)^2\right )}{24 \sqrt [3]{2}}-\frac {\log \left (1+\frac {2^{2/3} (1-x)^2}{\left (1-x^3\right )^{2/3}}-\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}\right )}{12 \sqrt [3]{2}}+\frac {\log \left (1+\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}\right )}{6 \sqrt [3]{2}}+\frac {\log \left (-1+x+2^{2/3} \sqrt [3]{1-x^3}\right )}{8 \sqrt [3]{2}} \] Output:

1/2*x^5/(-x^3+1)^(1/3)+3/4*x^2*(-x^3+1)^(2/3)-1/12*arctan(1/3*(1-2*2^(1/3) 
*(1-x)/(-x^3+1)^(1/3))*3^(1/2))*2^(2/3)*3^(1/2)-1/24*arctan(1/3*(1+2^(1/3) 
*(1-x)/(-x^3+1)^(1/3))*3^(1/2))*2^(2/3)*3^(1/2)-1/2*x^2*hypergeom([1/3, 2/ 
3],[5/3],x^3)-1/48*ln((1-x)*(1+x)^2)*2^(2/3)-1/24*ln(1+2^(2/3)*(1-x)^2/(-x 
^3+1)^(2/3)-2^(1/3)*(1-x)/(-x^3+1)^(1/3))*2^(2/3)+1/12*ln(1+2^(1/3)*(1-x)/ 
(-x^3+1)^(1/3))*2^(2/3)+1/16*ln(-1+x+2^(2/3)*(-x^3+1)^(1/3))*2^(2/3)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.

Time = 10.10 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.24 \[ \int \frac {x^{10}}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\frac {1}{20} x^2 \left (-\frac {5 \left (-3+x^3\right )}{\sqrt [3]{1-x^3}}-15 \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{3},1,\frac {5}{3},x^3,-x^3\right )-4 x^3 \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{3},1,\frac {8}{3},x^3,-x^3\right )\right ) \] Input:

Integrate[x^10/((1 - x^3)^(4/3)*(1 + x^3)),x]
 

Output:

(x^2*((-5*(-3 + x^3))/(1 - x^3)^(1/3) - 15*AppellF1[2/3, 1/3, 1, 5/3, x^3, 
 -x^3] - 4*x^3*AppellF1[5/3, 1/3, 1, 8/3, x^3, -x^3]))/20
 

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {970, 1052, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{10}}{\left (1-x^3\right )^{4/3} \left (x^3+1\right )} \, dx\)

\(\Big \downarrow \) 970

\(\displaystyle \frac {x^5}{2 \sqrt [3]{1-x^3}}-\frac {1}{2} \int \frac {x^4 \left (6 x^3+5\right )}{\sqrt [3]{1-x^3} \left (x^3+1\right )}dx\)

\(\Big \downarrow \) 1052

\(\displaystyle \frac {1}{2} \left (\frac {3}{2} x^2 \left (1-x^3\right )^{2/3}-\frac {1}{4} \int \frac {4 x \left (2 x^3+3\right )}{\sqrt [3]{1-x^3} \left (x^3+1\right )}dx\right )+\frac {x^5}{2 \sqrt [3]{1-x^3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {3}{2} x^2 \left (1-x^3\right )^{2/3}-\int \frac {x \left (2 x^3+3\right )}{\sqrt [3]{1-x^3} \left (x^3+1\right )}dx\right )+\frac {x^5}{2 \sqrt [3]{1-x^3}}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {1}{2} \left (\frac {3}{2} x^2 \left (1-x^3\right )^{2/3}-\int \left (\frac {2 x}{\sqrt [3]{1-x^3}}+\frac {x}{\sqrt [3]{1-x^3} \left (x^3+1\right )}\right )dx\right )+\frac {x^5}{2 \sqrt [3]{1-x^3}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \left (-\frac {\arctan \left (\frac {1-\frac {2 \sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{\sqrt [3]{2} \sqrt {3}}-\frac {\arctan \left (\frac {\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1}{\sqrt {3}}\right )}{2 \sqrt [3]{2} \sqrt {3}}+x^2 \left (-\operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {2}{3},\frac {5}{3},x^3\right )\right )-\frac {\log \left (\frac {2^{2/3} (1-x)^2}{\left (1-x^3\right )^{2/3}}-\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1\right )}{6 \sqrt [3]{2}}+\frac {\log \left (\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1\right )}{3 \sqrt [3]{2}}+\frac {\log \left (2^{2/3} \sqrt [3]{1-x^3}+x-1\right )}{4 \sqrt [3]{2}}+\frac {3}{2} \left (1-x^3\right )^{2/3} x^2-\frac {\log \left ((1-x) (x+1)^2\right )}{12 \sqrt [3]{2}}\right )+\frac {x^5}{2 \sqrt [3]{1-x^3}}\)

Input:

Int[x^10/((1 - x^3)^(4/3)*(1 + x^3)),x]
 

Output:

x^5/(2*(1 - x^3)^(1/3)) + ((3*x^2*(1 - x^3)^(2/3))/2 - ArcTan[(1 - (2*2^(1 
/3)*(1 - x))/(1 - x^3)^(1/3))/Sqrt[3]]/(2^(1/3)*Sqrt[3]) - ArcTan[(1 + (2^ 
(1/3)*(1 - x))/(1 - x^3)^(1/3))/Sqrt[3]]/(2*2^(1/3)*Sqrt[3]) - x^2*Hyperge 
ometric2F1[1/3, 2/3, 5/3, x^3] - Log[(1 - x)*(1 + x)^2]/(12*2^(1/3)) - Log 
[1 + (2^(2/3)*(1 - x)^2)/(1 - x^3)^(2/3) - (2^(1/3)*(1 - x))/(1 - x^3)^(1/ 
3)]/(6*2^(1/3)) + Log[1 + (2^(1/3)*(1 - x))/(1 - x^3)^(1/3)]/(3*2^(1/3)) + 
 Log[-1 + x + 2^(2/3)*(1 - x^3)^(1/3)]/(4*2^(1/3)))/2
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 970
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[(-a)*e^(2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n) 
^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Simp[e^(2*n) 
/(b*n*(b*c - a*d)*(p + 1))   Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d 
*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^ 
n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[ 
n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, 
n, p, q, x]
 

rule 1052
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[f*g^(n - 1)*(g*x)^(m 
- n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q + 1) + 
 1))), x] - Simp[g^n/(b*d*(m + n*(p + q + 1) + 1))   Int[(g*x)^(m - n)*(a + 
 b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*( 
f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x] /; FreeQ[ 
{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [F]

\[\int \frac {x^{10}}{\left (-x^{3}+1\right )^{\frac {4}{3}} \left (x^{3}+1\right )}d x\]

Input:

int(x^10/(-x^3+1)^(4/3)/(x^3+1),x)
 

Output:

int(x^10/(-x^3+1)^(4/3)/(x^3+1),x)
 

Fricas [F]

\[ \int \frac {x^{10}}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\int { \frac {x^{10}}{{\left (x^{3} + 1\right )} {\left (-x^{3} + 1\right )}^{\frac {4}{3}}} \,d x } \] Input:

integrate(x^10/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="fricas")
 

Output:

integral((-x^3 + 1)^(2/3)*x^10/(x^9 - x^6 - x^3 + 1), x)
 

Sympy [F]

\[ \int \frac {x^{10}}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\int \frac {x^{10}}{\left (- \left (x - 1\right ) \left (x^{2} + x + 1\right )\right )^{\frac {4}{3}} \left (x + 1\right ) \left (x^{2} - x + 1\right )}\, dx \] Input:

integrate(x**10/(-x**3+1)**(4/3)/(x**3+1),x)
 

Output:

Integral(x**10/((-(x - 1)*(x**2 + x + 1))**(4/3)*(x + 1)*(x**2 - x + 1)), 
x)
 

Maxima [F]

\[ \int \frac {x^{10}}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\int { \frac {x^{10}}{{\left (x^{3} + 1\right )} {\left (-x^{3} + 1\right )}^{\frac {4}{3}}} \,d x } \] Input:

integrate(x^10/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="maxima")
 

Output:

integrate(x^10/((x^3 + 1)*(-x^3 + 1)^(4/3)), x)
 

Giac [F]

\[ \int \frac {x^{10}}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\int { \frac {x^{10}}{{\left (x^{3} + 1\right )} {\left (-x^{3} + 1\right )}^{\frac {4}{3}}} \,d x } \] Input:

integrate(x^10/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="giac")
 

Output:

integrate(x^10/((x^3 + 1)*(-x^3 + 1)^(4/3)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{10}}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=\int \frac {x^{10}}{{\left (1-x^3\right )}^{4/3}\,\left (x^3+1\right )} \,d x \] Input:

int(x^10/((1 - x^3)^(4/3)*(x^3 + 1)),x)
 

Output:

int(x^10/((1 - x^3)^(4/3)*(x^3 + 1)), x)
 

Reduce [F]

\[ \int \frac {x^{10}}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx=-\left (\int \frac {x^{10}}{\left (-x^{3}+1\right )^{\frac {1}{3}} x^{6}-\left (-x^{3}+1\right )^{\frac {1}{3}}}d x \right ) \] Input:

int(x^10/(-x^3+1)^(4/3)/(x^3+1),x)
 

Output:

 - int(x**10/(( - x**3 + 1)**(1/3)*x**6 - ( - x**3 + 1)**(1/3)),x)