\(\int \frac {x^{10} (c+d x^4)}{(a+b x^4)^{9/4}} \, dx\) [155]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 152 \[ \int \frac {x^{10} \left (c+d x^4\right )}{\left (a+b x^4\right )^{9/4}} \, dx=-\frac {(b c-a d) x^7}{5 b^2 \left (a+b x^4\right )^{5/4}}+\frac {7 (6 b c-11 a d) x^3}{60 b^3 \sqrt [4]{a+b x^4}}+\frac {d x^7}{6 b^2 \sqrt [4]{a+b x^4}}+\frac {7 \sqrt {a} (6 b c-11 a d) \sqrt [4]{1+\frac {a}{b x^4}} x E\left (\left .\frac {1}{2} \cot ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{20 b^{7/2} \sqrt [4]{a+b x^4}} \] Output:

-1/5*(-a*d+b*c)*x^7/b^2/(b*x^4+a)^(5/4)+7/60*(-11*a*d+6*b*c)*x^3/b^3/(b*x^ 
4+a)^(1/4)+1/6*d*x^7/b^2/(b*x^4+a)^(1/4)+7/20*a^(1/2)*(-11*a*d+6*b*c)*(1+a 
/b/x^4)^(1/4)*x*EllipticE(sin(1/2*arccot(b^(1/2)*x^2/a^(1/2))),2^(1/2))/b^ 
(7/2)/(b*x^4+a)^(1/4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.09 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.72 \[ \int \frac {x^{10} \left (c+d x^4\right )}{\left (a+b x^4\right )^{9/4}} \, dx=\frac {x^3 \left (-77 a^2 d+a b \left (42 c-22 d x^4\right )+4 b^2 x^4 \left (3 c+d x^4\right )+7 (-6 b c+11 a d) \left (a+b x^4\right ) \sqrt [4]{1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {9}{4},\frac {7}{4},-\frac {b x^4}{a}\right )\right )}{24 b^3 \left (a+b x^4\right )^{5/4}} \] Input:

Integrate[(x^10*(c + d*x^4))/(a + b*x^4)^(9/4),x]
 

Output:

(x^3*(-77*a^2*d + a*b*(42*c - 22*d*x^4) + 4*b^2*x^4*(3*c + d*x^4) + 7*(-6* 
b*c + 11*a*d)*(a + b*x^4)*(1 + (b*x^4)/a)^(1/4)*Hypergeometric2F1[3/4, 9/4 
, 7/4, -((b*x^4)/a)]))/(24*b^3*(a + b*x^4)^(5/4))
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {957, 815, 815, 813, 858, 807, 212}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{10} \left (c+d x^4\right )}{\left (a+b x^4\right )^{9/4}} \, dx\)

\(\Big \downarrow \) 957

\(\displaystyle \frac {x^{11} (b c-a d)}{5 a b \left (a+b x^4\right )^{5/4}}-\frac {(6 b c-11 a d) \int \frac {x^{10}}{\left (b x^4+a\right )^{5/4}}dx}{5 a b}\)

\(\Big \downarrow \) 815

\(\displaystyle \frac {x^{11} (b c-a d)}{5 a b \left (a+b x^4\right )^{5/4}}-\frac {(6 b c-11 a d) \left (\frac {x^7}{6 b \sqrt [4]{a+b x^4}}-\frac {7 a \int \frac {x^6}{\left (b x^4+a\right )^{5/4}}dx}{6 b}\right )}{5 a b}\)

\(\Big \downarrow \) 815

\(\displaystyle \frac {x^{11} (b c-a d)}{5 a b \left (a+b x^4\right )^{5/4}}-\frac {(6 b c-11 a d) \left (\frac {x^7}{6 b \sqrt [4]{a+b x^4}}-\frac {7 a \left (\frac {x^3}{2 b \sqrt [4]{a+b x^4}}-\frac {3 a \int \frac {x^2}{\left (b x^4+a\right )^{5/4}}dx}{2 b}\right )}{6 b}\right )}{5 a b}\)

\(\Big \downarrow \) 813

\(\displaystyle \frac {x^{11} (b c-a d)}{5 a b \left (a+b x^4\right )^{5/4}}-\frac {(6 b c-11 a d) \left (\frac {x^7}{6 b \sqrt [4]{a+b x^4}}-\frac {7 a \left (\frac {x^3}{2 b \sqrt [4]{a+b x^4}}-\frac {3 a x \sqrt [4]{\frac {a}{b x^4}+1} \int \frac {1}{\left (\frac {a}{b x^4}+1\right )^{5/4} x^3}dx}{2 b^2 \sqrt [4]{a+b x^4}}\right )}{6 b}\right )}{5 a b}\)

\(\Big \downarrow \) 858

\(\displaystyle \frac {x^{11} (b c-a d)}{5 a b \left (a+b x^4\right )^{5/4}}-\frac {(6 b c-11 a d) \left (\frac {x^7}{6 b \sqrt [4]{a+b x^4}}-\frac {7 a \left (\frac {3 a x \sqrt [4]{\frac {a}{b x^4}+1} \int \frac {1}{\left (\frac {a}{b x^4}+1\right )^{5/4} x}d\frac {1}{x}}{2 b^2 \sqrt [4]{a+b x^4}}+\frac {x^3}{2 b \sqrt [4]{a+b x^4}}\right )}{6 b}\right )}{5 a b}\)

\(\Big \downarrow \) 807

\(\displaystyle \frac {x^{11} (b c-a d)}{5 a b \left (a+b x^4\right )^{5/4}}-\frac {(6 b c-11 a d) \left (\frac {x^7}{6 b \sqrt [4]{a+b x^4}}-\frac {7 a \left (\frac {3 a x \sqrt [4]{\frac {a}{b x^4}+1} \int \frac {1}{\left (\frac {a}{b x^2}+1\right )^{5/4}}d\frac {1}{x^2}}{4 b^2 \sqrt [4]{a+b x^4}}+\frac {x^3}{2 b \sqrt [4]{a+b x^4}}\right )}{6 b}\right )}{5 a b}\)

\(\Big \downarrow \) 212

\(\displaystyle \frac {x^{11} (b c-a d)}{5 a b \left (a+b x^4\right )^{5/4}}-\frac {(6 b c-11 a d) \left (\frac {x^7}{6 b \sqrt [4]{a+b x^4}}-\frac {7 a \left (\frac {3 \sqrt {a} x \sqrt [4]{\frac {a}{b x^4}+1} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {a}}{\sqrt {b} x^2}\right )\right |2\right )}{2 b^{3/2} \sqrt [4]{a+b x^4}}+\frac {x^3}{2 b \sqrt [4]{a+b x^4}}\right )}{6 b}\right )}{5 a b}\)

Input:

Int[(x^10*(c + d*x^4))/(a + b*x^4)^(9/4),x]
 

Output:

((b*c - a*d)*x^11)/(5*a*b*(a + b*x^4)^(5/4)) - ((6*b*c - 11*a*d)*(x^7/(6*b 
*(a + b*x^4)^(1/4)) - (7*a*(x^3/(2*b*(a + b*x^4)^(1/4)) + (3*Sqrt[a]*(1 + 
a/(b*x^4))^(1/4)*x*EllipticE[ArcTan[Sqrt[a]/(Sqrt[b]*x^2)]/2, 2])/(2*b^(3/ 
2)*(a + b*x^4)^(1/4))))/(6*b)))/(5*a*b)
 

Defintions of rubi rules used

rule 212
Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]) 
)*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a 
, 0] && PosQ[b/a]
 

rule 807
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m 
+ 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, 
x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]
 

rule 813
Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(5/4), x_Symbol] :> Simp[x*((1 + a/(b*x^4) 
)^(1/4)/(b*(a + b*x^4)^(1/4)))   Int[1/(x^3*(1 + a/(b*x^4))^(5/4)), x], x] 
/; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 815
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^4)^(5/4), x_Symbol] :> Simp[x^(m - 3)/(b*( 
m - 4)*(a + b*x^4)^(1/4)), x] - Simp[a*((m - 3)/(b*(m - 4)))   Int[x^(m - 4 
)/(a + b*x^4)^(5/4), x], x] /; FreeQ[{a, b}, x] && PosQ[b/a] && IGtQ[(m - 2 
)/4, 0]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 

rule 957
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[(-(b*c - a*d))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a 
*b*e*n*(p + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b*n* 
(p + 1))   Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, 
 m, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && N 
eQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] && LeQ[-1 
, m, (-n)*(p + 1)]))
 
Maple [F]

\[\int \frac {x^{10} \left (d \,x^{4}+c \right )}{\left (b \,x^{4}+a \right )^{\frac {9}{4}}}d x\]

Input:

int(x^10*(d*x^4+c)/(b*x^4+a)^(9/4),x)
 

Output:

int(x^10*(d*x^4+c)/(b*x^4+a)^(9/4),x)
 

Fricas [F]

\[ \int \frac {x^{10} \left (c+d x^4\right )}{\left (a+b x^4\right )^{9/4}} \, dx=\int { \frac {{\left (d x^{4} + c\right )} x^{10}}{{\left (b x^{4} + a\right )}^{\frac {9}{4}}} \,d x } \] Input:

integrate(x^10*(d*x^4+c)/(b*x^4+a)^(9/4),x, algorithm="fricas")
 

Output:

integral((d*x^14 + c*x^10)*(b*x^4 + a)^(3/4)/(b^3*x^12 + 3*a*b^2*x^8 + 3*a 
^2*b*x^4 + a^3), x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 63.22 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.53 \[ \int \frac {x^{10} \left (c+d x^4\right )}{\left (a+b x^4\right )^{9/4}} \, dx=\frac {c x^{11} \Gamma \left (\frac {11}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {9}{4}, \frac {11}{4} \\ \frac {15}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {9}{4}} \Gamma \left (\frac {15}{4}\right )} + \frac {d x^{15} \Gamma \left (\frac {15}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {9}{4}, \frac {15}{4} \\ \frac {19}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {9}{4}} \Gamma \left (\frac {19}{4}\right )} \] Input:

integrate(x**10*(d*x**4+c)/(b*x**4+a)**(9/4),x)
 

Output:

c*x**11*gamma(11/4)*hyper((9/4, 11/4), (15/4,), b*x**4*exp_polar(I*pi)/a)/ 
(4*a**(9/4)*gamma(15/4)) + d*x**15*gamma(15/4)*hyper((9/4, 15/4), (19/4,), 
 b*x**4*exp_polar(I*pi)/a)/(4*a**(9/4)*gamma(19/4))
 

Maxima [F]

\[ \int \frac {x^{10} \left (c+d x^4\right )}{\left (a+b x^4\right )^{9/4}} \, dx=\int { \frac {{\left (d x^{4} + c\right )} x^{10}}{{\left (b x^{4} + a\right )}^{\frac {9}{4}}} \,d x } \] Input:

integrate(x^10*(d*x^4+c)/(b*x^4+a)^(9/4),x, algorithm="maxima")
 

Output:

integrate((d*x^4 + c)*x^10/(b*x^4 + a)^(9/4), x)
 

Giac [F]

\[ \int \frac {x^{10} \left (c+d x^4\right )}{\left (a+b x^4\right )^{9/4}} \, dx=\int { \frac {{\left (d x^{4} + c\right )} x^{10}}{{\left (b x^{4} + a\right )}^{\frac {9}{4}}} \,d x } \] Input:

integrate(x^10*(d*x^4+c)/(b*x^4+a)^(9/4),x, algorithm="giac")
 

Output:

integrate((d*x^4 + c)*x^10/(b*x^4 + a)^(9/4), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{10} \left (c+d x^4\right )}{\left (a+b x^4\right )^{9/4}} \, dx=\int \frac {x^{10}\,\left (d\,x^4+c\right )}{{\left (b\,x^4+a\right )}^{9/4}} \,d x \] Input:

int((x^10*(c + d*x^4))/(a + b*x^4)^(9/4),x)
 

Output:

int((x^10*(c + d*x^4))/(a + b*x^4)^(9/4), x)
 

Reduce [F]

\[ \int \frac {x^{10} \left (c+d x^4\right )}{\left (a+b x^4\right )^{9/4}} \, dx=\left (\int \frac {x^{14}}{\left (b \,x^{4}+a \right )^{\frac {1}{4}} a^{2}+2 \left (b \,x^{4}+a \right )^{\frac {1}{4}} a b \,x^{4}+\left (b \,x^{4}+a \right )^{\frac {1}{4}} b^{2} x^{8}}d x \right ) d +\left (\int \frac {x^{10}}{\left (b \,x^{4}+a \right )^{\frac {1}{4}} a^{2}+2 \left (b \,x^{4}+a \right )^{\frac {1}{4}} a b \,x^{4}+\left (b \,x^{4}+a \right )^{\frac {1}{4}} b^{2} x^{8}}d x \right ) c \] Input:

int(x^10*(d*x^4+c)/(b*x^4+a)^(9/4),x)
 

Output:

int(x**14/((a + b*x**4)**(1/4)*a**2 + 2*(a + b*x**4)**(1/4)*a*b*x**4 + (a 
+ b*x**4)**(1/4)*b**2*x**8),x)*d + int(x**10/((a + b*x**4)**(1/4)*a**2 + 2 
*(a + b*x**4)**(1/4)*a*b*x**4 + (a + b*x**4)**(1/4)*b**2*x**8),x)*c