\(\int \frac {x^2}{(a+b x^4) \sqrt {c+d x^4}} \, dx\) [250]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 656 \[ \int \frac {x^2}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx=\frac {\sqrt {-\frac {b c-a d}{\sqrt {-a} \sqrt {b}}} \arctan \left (\frac {\sqrt {-\frac {b c-a d}{\sqrt {-a} \sqrt {b}}} x}{\sqrt {c+d x^4}}\right )}{4 (b c-a d)}+\frac {\sqrt {\frac {b c-a d}{\sqrt {-a} \sqrt {b}}} \arctan \left (\frac {\sqrt {\frac {b c-a d}{\sqrt {-a} \sqrt {b}}} x}{\sqrt {c+d x^4}}\right )}{4 (b c-a d)}-\frac {\sqrt [4]{c} \sqrt [4]{d} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 (b c+a d) \sqrt {c+d x^4}}-\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{8 \sqrt {b} \sqrt [4]{c} \left (\sqrt {-a} \sqrt {b} \sqrt {c}-a \sqrt {d}\right ) \sqrt [4]{d} \sqrt {c+d x^4}}+\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticPi}\left (-\frac {\sqrt {c} \left (\sqrt {b}-\frac {\sqrt {-a} \sqrt {d}}{\sqrt {c}}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{8 \sqrt {b} \sqrt [4]{c} \left (\sqrt {-a} \sqrt {b} \sqrt {c}+a \sqrt {d}\right ) \sqrt [4]{d} \sqrt {c+d x^4}} \] Output:

(-(-a*d+b*c)/(-a)^(1/2)/b^(1/2))^(1/2)*arctan((-(-a*d+b*c)/(-a)^(1/2)/b^(1 
/2))^(1/2)*x/(d*x^4+c)^(1/2))/(-4*a*d+4*b*c)+((-a*d+b*c)/(-a)^(1/2)/b^(1/2 
))^(1/2)*arctan(((-a*d+b*c)/(-a)^(1/2)/b^(1/2))^(1/2)*x/(d*x^4+c)^(1/2))/( 
-4*a*d+4*b*c)-1/2*c^(1/4)*d^(1/4)*(c^(1/2)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2 
)+d^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(d^(1/4)*x/c^(1/4)),1/2*2^ 
(1/2))/(a*d+b*c)/(d*x^4+c)^(1/2)-1/8*(b^(1/2)*c^(1/2)-(-a)^(1/2)*d^(1/2))* 
(c^(1/2)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^(1/2)*EllipticPi 
(sin(2*arctan(d^(1/4)*x/c^(1/4))),1/4*(b^(1/2)*c^(1/2)+(-a)^(1/2)*d^(1/2)) 
^2/(-a)^(1/2)/b^(1/2)/c^(1/2)/d^(1/2),1/2*2^(1/2))/b^(1/2)/c^(1/4)/((-a)^( 
1/2)*b^(1/2)*c^(1/2)-a*d^(1/2))/d^(1/4)/(d*x^4+c)^(1/2)+1/8*(b^(1/2)*c^(1/ 
2)+(-a)^(1/2)*d^(1/2))*(c^(1/2)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x 
^2)^2)^(1/2)*EllipticPi(sin(2*arctan(d^(1/4)*x/c^(1/4))),-1/4*c^(1/2)*(b^( 
1/2)-(-a)^(1/2)*d^(1/2)/c^(1/2))^2/(-a)^(1/2)/b^(1/2)/d^(1/2),1/2*2^(1/2)) 
/b^(1/2)/c^(1/4)/((-a)^(1/2)*b^(1/2)*c^(1/2)+a*d^(1/2))/d^(1/4)/(d*x^4+c)^ 
(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.10 \[ \int \frac {x^2}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx=\frac {x^3 \sqrt {\frac {c+d x^4}{c}} \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )}{3 a \sqrt {c+d x^4}} \] Input:

Integrate[x^2/((a + b*x^4)*Sqrt[c + d*x^4]),x]
 

Output:

(x^3*Sqrt[(c + d*x^4)/c]*AppellF1[3/4, 1/2, 1, 7/4, -((d*x^4)/c), -((b*x^4 
)/a)])/(3*a*Sqrt[c + d*x^4])
 

Rubi [A] (warning: unable to verify)

Time = 1.87 (sec) , antiderivative size = 865, normalized size of antiderivative = 1.32, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {993, 1541, 27, 761, 2221, 2223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx\)

\(\Big \downarrow \) 993

\(\displaystyle \frac {\int \frac {1}{\left (\sqrt {b} x^2+\sqrt {-a}\right ) \sqrt {d x^4+c}}dx}{2 \sqrt {b}}-\frac {\int \frac {1}{\left (\sqrt {-a}-\sqrt {b} x^2\right ) \sqrt {d x^4+c}}dx}{2 \sqrt {b}}\)

\(\Big \downarrow \) 1541

\(\displaystyle \frac {\frac {\sqrt {b} \sqrt {c} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\sqrt {c} \left (\sqrt {b} x^2+\sqrt {-a}\right ) \sqrt {d x^4+c}}dx}{a d+b c}-\frac {\sqrt {d} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}}{2 \sqrt {b}}-\frac {\frac {\sqrt {d} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \sqrt {c} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\sqrt {c} \left (\sqrt {-a}-\sqrt {b} x^2\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 \sqrt {b}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\sqrt {b} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (\sqrt {b} x^2+\sqrt {-a}\right ) \sqrt {d x^4+c}}dx}{a d+b c}-\frac {\sqrt {d} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}}{2 \sqrt {b}}-\frac {\frac {\sqrt {d} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (\sqrt {-a}-\sqrt {b} x^2\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 \sqrt {b}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\frac {\sqrt {b} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (\sqrt {b} x^2+\sqrt {-a}\right ) \sqrt {d x^4+c}}dx}{a d+b c}-\frac {\sqrt [4]{d} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} \sqrt {c+d x^4} (a d+b c)}}{2 \sqrt {b}}-\frac {\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (\sqrt {-a}-\sqrt {b} x^2\right ) \sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt [4]{d} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} \sqrt {c+d x^4} (a d+b c)}}{2 \sqrt {b}}\)

\(\Big \downarrow \) 2221

\(\displaystyle \frac {\frac {\sqrt {b} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \left (\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {c+d x^4}}\right )}{2 \sqrt [4]{-a} \sqrt [4]{b} \sqrt {b c-a d}}+\frac {\left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \left (\frac {\sqrt {c}}{\sqrt {-a}}+\frac {\sqrt {d}}{\sqrt {b}}\right ) \operatorname {EllipticPi}\left (-\frac {\sqrt {c} \left (\sqrt {b}-\frac {\sqrt {-a} \sqrt {d}}{\sqrt {c}}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} \sqrt [4]{d} \sqrt {c+d x^4}}\right )}{a d+b c}-\frac {\sqrt [4]{d} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} \sqrt {c+d x^4} (a d+b c)}}{2 \sqrt {b}}-\frac {\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (\sqrt {-a}-\sqrt {b} x^2\right ) \sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt [4]{d} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} \sqrt {c+d x^4} (a d+b c)}}{2 \sqrt {b}}\)

\(\Big \downarrow \) 2223

\(\displaystyle \frac {\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \left (\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{2 \sqrt [4]{-a} \sqrt [4]{b} \sqrt {b c-a d}}+\frac {\left (\frac {\sqrt {c}}{\sqrt {-a}}+\frac {\sqrt {d}}{\sqrt {b}}\right ) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (-\frac {\sqrt {c} \left (\sqrt {b}-\frac {\sqrt {-a} \sqrt {d}}{\sqrt {c}}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}\right )}{b c+a d}-\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}}{2 \sqrt {b}}-\frac {\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \left (\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \text {arctanh}\left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{2 \sqrt [4]{-a} \sqrt [4]{b} \sqrt {b c-a d}}-\frac {\left (\frac {\sqrt {c} a}{(-a)^{3/2}}+\frac {\sqrt {d}}{\sqrt {b}}\right ) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}\right )}{b c+a d}}{2 \sqrt {b}}\)

Input:

Int[x^2/((a + b*x^4)*Sqrt[c + d*x^4]),x]
 

Output:

-1/2*(((Sqrt[b]*Sqrt[c] - Sqrt[-a]*Sqrt[d])*d^(1/4)*(Sqrt[c] + Sqrt[d]*x^2 
)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2*ArcTan[(d^(1/4)* 
x)/c^(1/4)], 1/2])/(2*c^(1/4)*(b*c + a*d)*Sqrt[c + d*x^4]) + (Sqrt[b]*(Sqr 
t[b]*Sqrt[c] - Sqrt[-a]*Sqrt[d])*(((Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])*Ar 
cTanh[(Sqrt[b*c - a*d]*x)/((-a)^(1/4)*b^(1/4)*Sqrt[c + d*x^4])])/(2*(-a)^( 
1/4)*b^(1/4)*Sqrt[b*c - a*d]) - (((a*Sqrt[c])/(-a)^(3/2) + Sqrt[d]/Sqrt[b] 
)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*Elli 
pticPi[(Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])^2/(4*Sqrt[-a]*Sqrt[b]*Sqrt[c]* 
Sqrt[d]), 2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(4*c^(1/4)*d^(1/4)*Sqrt[c + 
 d*x^4])))/(b*c + a*d))/Sqrt[b] + (-1/2*((Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[ 
d])*d^(1/4)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^ 
2)^2]*EllipticF[2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(c^(1/4)*(b*c + a*d)* 
Sqrt[c + d*x^4]) + (Sqrt[b]*(Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])*(((Sqrt[b 
]*Sqrt[c] - Sqrt[-a]*Sqrt[d])*ArcTan[(Sqrt[b*c - a*d]*x)/((-a)^(1/4)*b^(1/ 
4)*Sqrt[c + d*x^4])])/(2*(-a)^(1/4)*b^(1/4)*Sqrt[b*c - a*d]) + ((Sqrt[c]/S 
qrt[-a] + Sqrt[d]/Sqrt[b])*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[ 
c] + Sqrt[d]*x^2)^2]*EllipticPi[-1/4*(Sqrt[c]*(Sqrt[b] - (Sqrt[-a]*Sqrt[d] 
)/Sqrt[c])^2)/(Sqrt[-a]*Sqrt[b]*Sqrt[d]), 2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1 
/2])/(4*c^(1/4)*d^(1/4)*Sqrt[c + d*x^4])))/(b*c + a*d))/(2*Sqrt[b])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 993
Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> 
With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2* 
b)   Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Simp[s/(2*b)   Int[1/((r 
 - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
a*d, 0]
 

rule 1541
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[c/a, 2]}, Simp[(c*d + a*e*q)/(c*d^2 - a*e^2)   Int[1/Sqrt[a + c*x^4 
], x], x] - Simp[(a*e*(e + d*q))/(c*d^2 - a*e^2)   Int[(1 + q*x^2)/((d + e* 
x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e 
^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
 

rule 2221
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[c*(d/e 
) + a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[c*(d/e) + a*(e/d), 2])), x] 
+ Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4* 
d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x 
], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && Po 
sQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && PosQ[c*(d/e) + a*(e/d)]
 

rule 2223
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTanh[Rt[(-c)* 
(d/e) - a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[(-c)*(d/e) - a*(e/d), 2] 
)), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^ 
2)]/(4*d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*Arc 
Tan[q*x], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0 
] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && NegQ[c*(d/e) + a*(e 
/d)]
 
Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 0.44 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.29

method result size
default \(\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}}{\underline {\hspace {1.25 ex}}\alpha }}{8 b}\) \(191\)
elliptic \(\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}}{\underline {\hspace {1.25 ex}}\alpha }}{8 b}\) \(191\)

Input:

int(x^2/(b*x^4+a)/(d*x^4+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/8/b*sum(1/_alpha*(-1/((-a*d+b*c)/b)^(1/2)*arctanh(1/2*(2*_alpha^2*d*x^2+ 
2*c)/((-a*d+b*c)/b)^(1/2)/(d*x^4+c)^(1/2))+2/(I/c^(1/2)*d^(1/2))^(1/2)*_al 
pha^3*b/a*(1-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^(1/2)*d^(1/2)*x^2)^(1/2)/ 
(d*x^4+c)^(1/2)*EllipticPi(x*(I/c^(1/2)*d^(1/2))^(1/2),I*c^(1/2)/d^(1/2)*_ 
alpha^2/a*b,(-I/c^(1/2)*d^(1/2))^(1/2)/(I/c^(1/2)*d^(1/2))^(1/2))),_alpha= 
RootOf(_Z^4*b+a))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx=\text {Timed out} \] Input:

integrate(x^2/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {x^2}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx=\int \frac {x^{2}}{\left (a + b x^{4}\right ) \sqrt {c + d x^{4}}}\, dx \] Input:

integrate(x**2/(b*x**4+a)/(d*x**4+c)**(1/2),x)
 

Output:

Integral(x**2/((a + b*x**4)*sqrt(c + d*x**4)), x)
 

Maxima [F]

\[ \int \frac {x^2}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx=\int { \frac {x^{2}}{{\left (b x^{4} + a\right )} \sqrt {d x^{4} + c}} \,d x } \] Input:

integrate(x^2/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^2/((b*x^4 + a)*sqrt(d*x^4 + c)), x)
 

Giac [F]

\[ \int \frac {x^2}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx=\int { \frac {x^{2}}{{\left (b x^{4} + a\right )} \sqrt {d x^{4} + c}} \,d x } \] Input:

integrate(x^2/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^2/((b*x^4 + a)*sqrt(d*x^4 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx=\int \frac {x^2}{\left (b\,x^4+a\right )\,\sqrt {d\,x^4+c}} \,d x \] Input:

int(x^2/((a + b*x^4)*(c + d*x^4)^(1/2)),x)
 

Output:

int(x^2/((a + b*x^4)*(c + d*x^4)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {x^2}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx=\int \frac {\sqrt {d \,x^{4}+c}\, x^{2}}{b d \,x^{8}+a d \,x^{4}+b c \,x^{4}+a c}d x \] Input:

int(x^2/(b*x^4+a)/(d*x^4+c)^(1/2),x)
 

Output:

int((sqrt(c + d*x**4)*x**2)/(a*c + a*d*x**4 + b*c*x**4 + b*d*x**8),x)