\(\int \frac {x^7}{(a+b x^4)^2 \sqrt {c+d x^4}} \, dx\) [254]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 99 \[ \int \frac {x^7}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {a \sqrt {c+d x^4}}{4 b (b c-a d) \left (a+b x^4\right )}-\frac {(2 b c-a d) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{4 b^{3/2} (b c-a d)^{3/2}} \] Output:

1/4*a*(d*x^4+c)^(1/2)/b/(-a*d+b*c)/(b*x^4+a)-1/4*(-a*d+2*b*c)*arctanh(b^(1 
/2)*(d*x^4+c)^(1/2)/(-a*d+b*c)^(1/2))/b^(3/2)/(-a*d+b*c)^(3/2)
 

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.01 \[ \int \frac {x^7}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {\frac {a \sqrt {b} \sqrt {c+d x^4}}{(b c-a d) \left (a+b x^4\right )}-\frac {(2 b c-a d) \arctan \left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {-b c+a d}}\right )}{(-b c+a d)^{3/2}}}{4 b^{3/2}} \] Input:

Integrate[x^7/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

((a*Sqrt[b]*Sqrt[c + d*x^4])/((b*c - a*d)*(a + b*x^4)) - ((2*b*c - a*d)*Ar 
cTan[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[-(b*c) + a*d]])/(-(b*c) + a*d)^(3/2))/ 
(4*b^(3/2))
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.99, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {948, 87, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^7}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx\)

\(\Big \downarrow \) 948

\(\displaystyle \frac {1}{4} \int \frac {x^4}{\left (b x^4+a\right )^2 \sqrt {d x^4+c}}dx^4\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {1}{4} \left (\frac {(2 b c-a d) \int \frac {1}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx^4}{2 b (b c-a d)}+\frac {a \sqrt {c+d x^4}}{b \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{4} \left (\frac {(2 b c-a d) \int \frac {1}{\frac {b x^8}{d}+a-\frac {b c}{d}}d\sqrt {d x^4+c}}{b d (b c-a d)}+\frac {a \sqrt {c+d x^4}}{b \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{4} \left (\frac {a \sqrt {c+d x^4}}{b \left (a+b x^4\right ) (b c-a d)}-\frac {(2 b c-a d) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{b^{3/2} (b c-a d)^{3/2}}\right )\)

Input:

Int[x^7/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

((a*Sqrt[c + d*x^4])/(b*(b*c - a*d)*(a + b*x^4)) - ((2*b*c - a*d)*ArcTanh[ 
(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]])/(b^(3/2)*(b*c - a*d)^(3/2)))/4
 

Defintions of rubi rules used

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 948
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^ 
p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ 
[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
 
Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.84

method result size
pseudoelliptic \(\frac {-\frac {a \sqrt {d \,x^{4}+c}}{b \,x^{4}+a}+\frac {\left (a d -2 c b \right ) \arctan \left (\frac {\sqrt {d \,x^{4}+c}\, b}{\sqrt {\left (a d -c b \right ) b}}\right )}{\sqrt {\left (a d -c b \right ) b}}}{4 \left (a d -c b \right ) b}\) \(83\)
elliptic \(-\frac {\ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 b^{2} \sqrt {-\frac {a d -c b}{b}}}-\frac {\ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 b^{2} \sqrt {-\frac {a d -c b}{b}}}+\frac {\sqrt {-a b}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 b^{2} \left (a d -c b \right ) \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}+\frac {a d \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 b^{2} \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}-\frac {\sqrt {-a b}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 b^{2} \left (a d -c b \right ) \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}+\frac {a d \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 b^{2} \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}\) \(851\)
default \(\frac {-\frac {\ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 b \sqrt {-\frac {a d -c b}{b}}}-\frac {\ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 b \sqrt {-\frac {a d -c b}{b}}}}{b}-\frac {a \left (-\frac {\sqrt {-a b}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a b \left (a d -c b \right ) \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}-\frac {d \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 b \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}+\frac {\sqrt {-a b}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a b \left (a d -c b \right ) \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}-\frac {d \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 b \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}\right )}{b}\) \(867\)

Input:

int(x^7/(b*x^4+a)^2/(d*x^4+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/(a*d-b*c)/b*(-a*(d*x^4+c)^(1/2)/(b*x^4+a)+(a*d-2*b*c)/((a*d-b*c)*b)^(1 
/2)*arctan((d*x^4+c)^(1/2)*b/((a*d-b*c)*b)^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 348, normalized size of antiderivative = 3.52 \[ \int \frac {x^7}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\left [\frac {{\left ({\left (2 \, b^{2} c - a b d\right )} x^{4} + 2 \, a b c - a^{2} d\right )} \sqrt {b^{2} c - a b d} \log \left (\frac {b d x^{4} + 2 \, b c - a d - 2 \, \sqrt {d x^{4} + c} \sqrt {b^{2} c - a b d}}{b x^{4} + a}\right ) + 2 \, \sqrt {d x^{4} + c} {\left (a b^{2} c - a^{2} b d\right )}}{8 \, {\left (a b^{4} c^{2} - 2 \, a^{2} b^{3} c d + a^{3} b^{2} d^{2} + {\left (b^{5} c^{2} - 2 \, a b^{4} c d + a^{2} b^{3} d^{2}\right )} x^{4}\right )}}, \frac {{\left ({\left (2 \, b^{2} c - a b d\right )} x^{4} + 2 \, a b c - a^{2} d\right )} \sqrt {-b^{2} c + a b d} \arctan \left (\frac {\sqrt {d x^{4} + c} \sqrt {-b^{2} c + a b d}}{b d x^{4} + b c}\right ) + \sqrt {d x^{4} + c} {\left (a b^{2} c - a^{2} b d\right )}}{4 \, {\left (a b^{4} c^{2} - 2 \, a^{2} b^{3} c d + a^{3} b^{2} d^{2} + {\left (b^{5} c^{2} - 2 \, a b^{4} c d + a^{2} b^{3} d^{2}\right )} x^{4}\right )}}\right ] \] Input:

integrate(x^7/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="fricas")
 

Output:

[1/8*(((2*b^2*c - a*b*d)*x^4 + 2*a*b*c - a^2*d)*sqrt(b^2*c - a*b*d)*log((b 
*d*x^4 + 2*b*c - a*d - 2*sqrt(d*x^4 + c)*sqrt(b^2*c - a*b*d))/(b*x^4 + a)) 
 + 2*sqrt(d*x^4 + c)*(a*b^2*c - a^2*b*d))/(a*b^4*c^2 - 2*a^2*b^3*c*d + a^3 
*b^2*d^2 + (b^5*c^2 - 2*a*b^4*c*d + a^2*b^3*d^2)*x^4), 1/4*(((2*b^2*c - a* 
b*d)*x^4 + 2*a*b*c - a^2*d)*sqrt(-b^2*c + a*b*d)*arctan(sqrt(d*x^4 + c)*sq 
rt(-b^2*c + a*b*d)/(b*d*x^4 + b*c)) + sqrt(d*x^4 + c)*(a*b^2*c - a^2*b*d)) 
/(a*b^4*c^2 - 2*a^2*b^3*c*d + a^3*b^2*d^2 + (b^5*c^2 - 2*a*b^4*c*d + a^2*b 
^3*d^2)*x^4)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^7}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\text {Timed out} \] Input:

integrate(x**7/(b*x**4+a)**2/(d*x**4+c)**(1/2),x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^7}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^7/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for m 
ore detail
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.17 \[ \int \frac {x^7}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {\frac {\sqrt {d x^{4} + c} a d^{2}}{{\left (b^{2} c - a b d\right )} {\left ({\left (d x^{4} + c\right )} b - b c + a d\right )}} + \frac {{\left (2 \, b c d - a d^{2}\right )} \arctan \left (\frac {\sqrt {d x^{4} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{{\left (b^{2} c - a b d\right )} \sqrt {-b^{2} c + a b d}}}{4 \, d} \] Input:

integrate(x^7/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="giac")
 

Output:

1/4*(sqrt(d*x^4 + c)*a*d^2/((b^2*c - a*b*d)*((d*x^4 + c)*b - b*c + a*d)) + 
 (2*b*c*d - a*d^2)*arctan(sqrt(d*x^4 + c)*b/sqrt(-b^2*c + a*b*d))/((b^2*c 
- a*b*d)*sqrt(-b^2*c + a*b*d)))/d
 

Mupad [B] (verification not implemented)

Time = 4.03 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.96 \[ \int \frac {x^7}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {d\,x^4+c}}{\sqrt {a\,d-b\,c}}\right )\,\left (a\,d-2\,b\,c\right )}{4\,b^{3/2}\,{\left (a\,d-b\,c\right )}^{3/2}}-\frac {a\,d\,\sqrt {d\,x^4+c}}{2\,b\,\left (a\,d-b\,c\right )\,\left (2\,b\,\left (d\,x^4+c\right )+2\,a\,d-2\,b\,c\right )} \] Input:

int(x^7/((a + b*x^4)^2*(c + d*x^4)^(1/2)),x)
 

Output:

(atan((b^(1/2)*(c + d*x^4)^(1/2))/(a*d - b*c)^(1/2))*(a*d - 2*b*c))/(4*b^( 
3/2)*(a*d - b*c)^(3/2)) - (a*d*(c + d*x^4)^(1/2))/(2*b*(a*d - b*c)*(2*b*(c 
 + d*x^4) + 2*a*d - 2*b*c))
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 1344, normalized size of antiderivative = 13.58 \[ \int \frac {x^7}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx =\text {Too large to display} \] Input:

int(x^7/(b*x^4+a)^2/(d*x^4+c)^(1/2),x)
 

Output:

(2*sqrt(d)*sqrt(b)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*atan((sqrt(d)*sqrt(b)* 
sqrt(c + d*x**4)*x**2 + sqrt(b)*c + sqrt(b)*d*x**4)/(sqrt(c + d*x**4)*sqrt 
(a*d - b*c) + sqrt(d)*sqrt(a*d - b*c)*x**2))*a**2*d*x**2 - 4*sqrt(d)*sqrt( 
b)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*atan((sqrt(d)*sqrt(b)*sqrt(c + d*x**4) 
*x**2 + sqrt(b)*c + sqrt(b)*d*x**4)/(sqrt(c + d*x**4)*sqrt(a*d - b*c) + sq 
rt(d)*sqrt(a*d - b*c)*x**2))*a*b*c*x**2 + 2*sqrt(d)*sqrt(b)*sqrt(c + d*x** 
4)*sqrt(a*d - b*c)*atan((sqrt(d)*sqrt(b)*sqrt(c + d*x**4)*x**2 + sqrt(b)*c 
 + sqrt(b)*d*x**4)/(sqrt(c + d*x**4)*sqrt(a*d - b*c) + sqrt(d)*sqrt(a*d - 
b*c)*x**2))*a*b*d*x**6 - 4*sqrt(d)*sqrt(b)*sqrt(c + d*x**4)*sqrt(a*d - b*c 
)*atan((sqrt(d)*sqrt(b)*sqrt(c + d*x**4)*x**2 + sqrt(b)*c + sqrt(b)*d*x**4 
)/(sqrt(c + d*x**4)*sqrt(a*d - b*c) + sqrt(d)*sqrt(a*d - b*c)*x**2))*b**2* 
c*x**6 + sqrt(b)*sqrt(a*d - b*c)*atan((sqrt(d)*sqrt(b)*sqrt(c + d*x**4)*x* 
*2 + sqrt(b)*c + sqrt(b)*d*x**4)/(sqrt(c + d*x**4)*sqrt(a*d - b*c) + sqrt( 
d)*sqrt(a*d - b*c)*x**2))*a**2*c*d + 2*sqrt(b)*sqrt(a*d - b*c)*atan((sqrt( 
d)*sqrt(b)*sqrt(c + d*x**4)*x**2 + sqrt(b)*c + sqrt(b)*d*x**4)/(sqrt(c + d 
*x**4)*sqrt(a*d - b*c) + sqrt(d)*sqrt(a*d - b*c)*x**2))*a**2*d**2*x**4 - 2 
*sqrt(b)*sqrt(a*d - b*c)*atan((sqrt(d)*sqrt(b)*sqrt(c + d*x**4)*x**2 + sqr 
t(b)*c + sqrt(b)*d*x**4)/(sqrt(c + d*x**4)*sqrt(a*d - b*c) + sqrt(d)*sqrt( 
a*d - b*c)*x**2))*a*b*c**2 - 3*sqrt(b)*sqrt(a*d - b*c)*atan((sqrt(d)*sqrt( 
b)*sqrt(c + d*x**4)*x**2 + sqrt(b)*c + sqrt(b)*d*x**4)/(sqrt(c + d*x**4...