\(\int \frac {x^4}{(a+b x^4)^2 \sqrt {c+d x^4}} \, dx\) [267]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 617 \[ \int \frac {x^4}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=-\frac {x \sqrt {c+d x^4}}{4 (b c-a d) \left (a+b x^4\right )}+\frac {(b c+a d) \arctan \left (\frac {\sqrt {-b c+a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {c+d x^4}}\right )}{16 (-a)^{3/4} b^{3/4} (-b c+a d)^{3/2}}+\frac {(b c+a d) \text {arctanh}\left (\frac {\sqrt {-b c+a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {c+d x^4}}\right )}{16 (-a)^{3/4} b^{3/4} (-b c+a d)^{3/2}}+\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) (b c+a d) \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{32 a b \sqrt [4]{c} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \sqrt [4]{d} (b c-a d) \sqrt {c+d x^4}}+\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) (b c+a d) \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{32 a b \sqrt [4]{c} \left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \sqrt [4]{d} (b c-a d) \sqrt {c+d x^4}} \] Output:

-1/4*x*(d*x^4+c)^(1/2)/(-a*d+b*c)/(b*x^4+a)+1/16*(a*d+b*c)*arctan((a*d-b*c 
)^(1/2)*x/(-a)^(1/4)/b^(1/4)/(d*x^4+c)^(1/2))/(-a)^(3/4)/b^(3/4)/(a*d-b*c) 
^(3/2)+1/16*(a*d+b*c)*arctanh((a*d-b*c)^(1/2)*x/(-a)^(1/4)/b^(1/4)/(d*x^4+ 
c)^(1/2))/(-a)^(3/4)/b^(3/4)/(a*d-b*c)^(3/2)+1/32*(b^(1/2)*c^(1/2)+(-a)^(1 
/2)*d^(1/2))*(a*d+b*c)*(c^(1/2)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x 
^2)^2)^(1/2)*EllipticPi(sin(2*arctan(d^(1/4)*x/c^(1/4))),-1/4*(b^(1/2)*c^( 
1/2)-(-a)^(1/2)*d^(1/2))^2/(-a)^(1/2)/b^(1/2)/c^(1/2)/d^(1/2),1/2*2^(1/2)) 
/a/b/c^(1/4)/(b^(1/2)*c^(1/2)-(-a)^(1/2)*d^(1/2))/d^(1/4)/(-a*d+b*c)/(d*x^ 
4+c)^(1/2)+1/32*(b^(1/2)*c^(1/2)-(-a)^(1/2)*d^(1/2))*(a*d+b*c)*(c^(1/2)+d^ 
(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^(1/2)*EllipticPi(sin(2*arct 
an(d^(1/4)*x/c^(1/4))),1/4*(b^(1/2)*c^(1/2)+(-a)^(1/2)*d^(1/2))^2/(-a)^(1/ 
2)/b^(1/2)/c^(1/2)/d^(1/2),1/2*2^(1/2))/a/b/c^(1/4)/(b^(1/2)*c^(1/2)+(-a)^ 
(1/2)*d^(1/2))/d^(1/4)/(-a*d+b*c)/(d*x^4+c)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.18 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.39 \[ \int \frac {x^4}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {x \left (\frac {d x^4 \sqrt {1+\frac {d x^4}{c}} \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )}{a}+\frac {5 \left (c+d x^4+\frac {5 a c^2 \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )}{-5 a c \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )+2 x^4 \left (2 b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )+a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )\right )}\right )}{a+b x^4}\right )}{20 (-b c+a d) \sqrt {c+d x^4}} \] Input:

Integrate[x^4/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

(x*((d*x^4*Sqrt[1 + (d*x^4)/c]*AppellF1[5/4, 1/2, 1, 9/4, -((d*x^4)/c), -( 
(b*x^4)/a)])/a + (5*(c + d*x^4 + (5*a*c^2*AppellF1[1/4, 1/2, 1, 5/4, -((d* 
x^4)/c), -((b*x^4)/a)])/(-5*a*c*AppellF1[1/4, 1/2, 1, 5/4, -((d*x^4)/c), - 
((b*x^4)/a)] + 2*x^4*(2*b*c*AppellF1[5/4, 1/2, 2, 9/4, -((d*x^4)/c), -((b* 
x^4)/a)] + a*d*AppellF1[5/4, 3/2, 1, 9/4, -((d*x^4)/c), -((b*x^4)/a)]))))/ 
(a + b*x^4)))/(20*(-(b*c) + a*d)*Sqrt[c + d*x^4])
 

Rubi [A] (warning: unable to verify)

Time = 2.27 (sec) , antiderivative size = 1013, normalized size of antiderivative = 1.64, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {971, 1021, 761, 925, 1541, 27, 761, 2221, 2223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx\)

\(\Big \downarrow \) 971

\(\displaystyle \frac {\int \frac {c-d x^4}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx}{4 (b c-a d)}-\frac {x \sqrt {c+d x^4}}{4 \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 1021

\(\displaystyle \frac {\frac {(a d+b c) \int \frac {1}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx}{b}-\frac {d \int \frac {1}{\sqrt {d x^4+c}}dx}{b}}{4 (b c-a d)}-\frac {x \sqrt {c+d x^4}}{4 \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\frac {(a d+b c) \int \frac {1}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx}{b}-\frac {d^{3/4} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt {c+d x^4}}}{4 (b c-a d)}-\frac {x \sqrt {c+d x^4}}{4 \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 925

\(\displaystyle \frac {\frac {(a d+b c) \left (\frac {\int \frac {1}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{2 a}+\frac {\int \frac {1}{\left (\frac {\sqrt {b} x^2}{\sqrt {-a}}+1\right ) \sqrt {d x^4+c}}dx}{2 a}\right )}{b}-\frac {d^{3/4} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt {c+d x^4}}}{4 (b c-a d)}-\frac {x \sqrt {c+d x^4}}{4 \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 1541

\(\displaystyle \frac {\frac {(a d+b c) \left (\frac {\frac {\sqrt {d} \left (\sqrt {-a} \sqrt {b} \sqrt {c}+a \sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \sqrt {c} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\sqrt {c} \left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 a}+\frac {\frac {a \sqrt {d} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \sqrt {c} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\sqrt {c} \left (\frac {\sqrt {b} x^2}{\sqrt {-a}}+1\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 a}\right )}{b}-\frac {d^{3/4} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt {c+d x^4}}}{4 (b c-a d)}-\frac {x \sqrt {c+d x^4}}{4 \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {(a d+b c) \left (\frac {\frac {\sqrt {d} \left (\sqrt {-a} \sqrt {b} \sqrt {c}+a \sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 a}+\frac {\frac {a \sqrt {d} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \int \frac {1}{\sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt {b} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (\frac {\sqrt {b} x^2}{\sqrt {-a}}+1\right ) \sqrt {d x^4+c}}dx}{a d+b c}}{2 a}\right )}{b}-\frac {d^{3/4} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt {c+d x^4}}}{4 (b c-a d)}-\frac {x \sqrt {c+d x^4}}{4 \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\frac {(a d+b c) \left (\frac {\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{a d+b c}+\frac {\sqrt [4]{d} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \left (\sqrt {-a} \sqrt {b} \sqrt {c}+a \sqrt {d}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} \sqrt {c+d x^4} (a d+b c)}}{2 a}+\frac {\frac {\sqrt {b} \left (\sqrt {-a} \sqrt {d}+\sqrt {b} \sqrt {c}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (\frac {\sqrt {b} x^2}{\sqrt {-a}}+1\right ) \sqrt {d x^4+c}}dx}{a d+b c}+\frac {a \sqrt [4]{d} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} \sqrt {c+d x^4} (a d+b c)}}{2 a}\right )}{b}-\frac {d^{3/4} \left (\sqrt {c}+\sqrt {d} x^2\right ) \sqrt {\frac {c+d x^4}{\left (\sqrt {c}+\sqrt {d} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt {c+d x^4}}}{4 (b c-a d)}-\frac {x \sqrt {c+d x^4}}{4 \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 2221

\(\displaystyle \frac {\frac {(b c+a d) \left (\frac {\frac {a \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \left (\frac {(-a)^{3/4} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}-\sqrt {d}\right ) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{2 \sqrt [4]{b} \sqrt {b c-a d}}+\frac {\left (\sqrt {c}+\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}\right )}{b c+a d}}{2 a}+\frac {\frac {\left (\sqrt {d} a+\sqrt {-a} \sqrt {b} \sqrt {c}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \int \frac {\sqrt {d} x^2+\sqrt {c}}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {-a}}\right ) \sqrt {d x^4+c}}dx}{b c+a d}}{2 a}\right )}{b}-\frac {d^{3/4} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt {d x^4+c}}}{4 (b c-a d)}-\frac {x \sqrt {d x^4+c}}{4 (b c-a d) \left (b x^4+a\right )}\)

\(\Big \downarrow \) 2223

\(\displaystyle \frac {\frac {(b c+a d) \left (\frac {\frac {a \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}+\sqrt {d}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \left (\frac {(-a)^{3/4} \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {-a}}-\sqrt {d}\right ) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{2 \sqrt [4]{b} \sqrt {b c-a d}}+\frac {\left (\sqrt {c}+\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}\right )}{b c+a d}}{2 a}+\frac {\frac {\left (\sqrt {d} a+\sqrt {-a} \sqrt {b} \sqrt {c}\right ) \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {b} \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right ) \left (\frac {\sqrt [4]{-a} \left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right ) \text {arctanh}\left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{2 \sqrt [4]{b} \sqrt {b c-a d}}+\frac {\left (\sqrt {c}-\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} \sqrt [4]{d} \sqrt {d x^4+c}}\right )}{b c+a d}}{2 a}\right )}{b}-\frac {d^{3/4} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt [4]{c} \sqrt {d x^4+c}}}{4 (b c-a d)}-\frac {x \sqrt {d x^4+c}}{4 (b c-a d) \left (b x^4+a\right )}\)

Input:

Int[x^4/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

-1/4*(x*Sqrt[c + d*x^4])/((b*c - a*d)*(a + b*x^4)) + (-1/2*(d^(3/4)*(Sqrt[ 
c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2* 
ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(b*c^(1/4)*Sqrt[c + d*x^4]) + ((b*c + a 
*d)*(((a*((Sqrt[b]*Sqrt[c])/Sqrt[-a] + Sqrt[d])*d^(1/4)*(Sqrt[c] + Sqrt[d] 
*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2*ArcTan[(d^(1 
/4)*x)/c^(1/4)], 1/2])/(2*c^(1/4)*(b*c + a*d)*Sqrt[c + d*x^4]) + (Sqrt[b]* 
(Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])*(((-a)^(3/4)*((Sqrt[b]*Sqrt[c])/Sqrt[ 
-a] - Sqrt[d])*ArcTan[(Sqrt[b*c - a*d]*x)/((-a)^(1/4)*b^(1/4)*Sqrt[c + d*x 
^4])])/(2*b^(1/4)*Sqrt[b*c - a*d]) + ((Sqrt[c] + (Sqrt[-a]*Sqrt[d])/Sqrt[b 
])*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*Ell 
ipticPi[-1/4*(Sqrt[b]*Sqrt[c] - Sqrt[-a]*Sqrt[d])^2/(Sqrt[-a]*Sqrt[b]*Sqrt 
[c]*Sqrt[d]), 2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(4*c^(1/4)*d^(1/4)*Sqrt 
[c + d*x^4])))/(b*c + a*d))/(2*a) + (((Sqrt[-a]*Sqrt[b]*Sqrt[c] + a*Sqrt[d 
])*d^(1/4)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2 
)^2]*EllipticF[2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(2*c^(1/4)*(b*c + a*d) 
*Sqrt[c + d*x^4]) + (Sqrt[b]*(Sqrt[b]*Sqrt[c] - Sqrt[-a]*Sqrt[d])*(((-a)^( 
1/4)*(Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])*ArcTanh[(Sqrt[b*c - a*d]*x)/((-a 
)^(1/4)*b^(1/4)*Sqrt[c + d*x^4])])/(2*b^(1/4)*Sqrt[b*c - a*d]) + ((Sqrt[c] 
 - (Sqrt[-a]*Sqrt[d])/Sqrt[b])*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(S 
qrt[c] + Sqrt[d]*x^2)^2]*EllipticPi[(Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d]...
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 925
Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[ 
1/(2*c)   Int[1/(Sqrt[a + b*x^4]*(1 - Rt[-d/c, 2]*x^2)), x], x] + Simp[1/(2 
*c)   Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a, b, 
 c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 971
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)* 
((c + d*x^n)^(q + 1)/(n*(b*c - a*d)*(p + 1))), x] - Simp[e^n/(n*(b*c - a*d) 
*(p + 1))   Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - 
 n + 1) + d*(m + n*(p + q + 1) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e 
, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n, m - n + 
 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1021
Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x 
_)^(n_)]), x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^n], x], x] + Simp[(b* 
e - a*f)/b   Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b, c, 
 d, e, f, n}, x]
 

rule 1541
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[c/a, 2]}, Simp[(c*d + a*e*q)/(c*d^2 - a*e^2)   Int[1/Sqrt[a + c*x^4 
], x], x] - Simp[(a*e*(e + d*q))/(c*d^2 - a*e^2)   Int[(1 + q*x^2)/((d + e* 
x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e 
^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
 

rule 2221
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[c*(d/e 
) + a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[c*(d/e) + a*(e/d), 2])), x] 
+ Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4* 
d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x 
], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && Po 
sQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && PosQ[c*(d/e) + a*(e/d)]
 

rule 2223
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTanh[Rt[(-c)* 
(d/e) - a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[(-c)*(d/e) - a*(e/d), 2] 
)), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^ 
2)]/(4*d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*Arc 
Tan[q*x], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0 
] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && NegQ[c*(d/e) + a*(e 
/d)]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 3.25 (sec) , antiderivative size = 324, normalized size of antiderivative = 0.53

method result size
elliptic \(\frac {x \sqrt {d \,x^{4}+c}}{4 \left (a d -c b \right ) \left (b \,x^{4}+a \right )}+\frac {d \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )}{4 \left (a d -c b \right ) b \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (a d +c b \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}\right )}{\left (a d -c b \right ) \underline {\hspace {1.25 ex}}\alpha ^{3}}}{32 b^{2}}\) \(324\)
default \(\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}}{\underline {\hspace {1.25 ex}}\alpha ^{3}}}{8 b^{2}}-\frac {a \left (-\frac {b x \sqrt {d \,x^{4}+c}}{4 a \left (a d -c b \right ) \left (b \,x^{4}+a \right )}-\frac {d \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )}{4 \left (a d -c b \right ) a \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-5 a d +3 c b \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}\right )}{\left (a d -c b \right ) \underline {\hspace {1.25 ex}}\alpha ^{3}}}{32 b a}\right )}{b}\) \(530\)

Input:

int(x^4/(b*x^4+a)^2/(d*x^4+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/(a*d-b*c)*x*(d*x^4+c)^(1/2)/(b*x^4+a)+1/4*d/(a*d-b*c)/b/(I/c^(1/2)*d^( 
1/2))^(1/2)*(1-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^(1/2)*d^(1/2)*x^2)^(1/2 
)/(d*x^4+c)^(1/2)*EllipticF(x*(I/c^(1/2)*d^(1/2))^(1/2),I)-1/32/b^2*sum((a 
*d+b*c)/(a*d-b*c)/_alpha^3*(-1/((-a*d+b*c)/b)^(1/2)*arctanh(1/2*(2*_alpha^ 
2*d*x^2+2*c)/((-a*d+b*c)/b)^(1/2)/(d*x^4+c)^(1/2))+2/(I/c^(1/2)*d^(1/2))^( 
1/2)*_alpha^3*b/a*(1-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^(1/2)*d^(1/2)*x^2 
)^(1/2)/(d*x^4+c)^(1/2)*EllipticPi(x*(I/c^(1/2)*d^(1/2))^(1/2),I*c^(1/2)/d 
^(1/2)*_alpha^2/a*b,(-I/c^(1/2)*d^(1/2))^(1/2)/(I/c^(1/2)*d^(1/2))^(1/2))) 
,_alpha=RootOf(_Z^4*b+a))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {x^4}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\text {Timed out} \] Input:

integrate(x^4/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {x^4}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x^{4}}{\left (a + b x^{4}\right )^{2} \sqrt {c + d x^{4}}}\, dx \] Input:

integrate(x**4/(b*x**4+a)**2/(d*x**4+c)**(1/2),x)
 

Output:

Integral(x**4/((a + b*x**4)**2*sqrt(c + d*x**4)), x)
 

Maxima [F]

\[ \int \frac {x^4}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int { \frac {x^{4}}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c}} \,d x } \] Input:

integrate(x^4/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^4/((b*x^4 + a)^2*sqrt(d*x^4 + c)), x)
 

Giac [F]

\[ \int \frac {x^4}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int { \frac {x^{4}}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c}} \,d x } \] Input:

integrate(x^4/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^4/((b*x^4 + a)^2*sqrt(d*x^4 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x^4}{{\left (b\,x^4+a\right )}^2\,\sqrt {d\,x^4+c}} \,d x \] Input:

int(x^4/((a + b*x^4)^2*(c + d*x^4)^(1/2)),x)
 

Output:

int(x^4/((a + b*x^4)^2*(c + d*x^4)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {x^4}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {\sqrt {d \,x^{4}+c}\, x^{4}}{b^{2} d \,x^{12}+2 a b d \,x^{8}+b^{2} c \,x^{8}+a^{2} d \,x^{4}+2 a b c \,x^{4}+a^{2} c}d x \] Input:

int(x^4/(b*x^4+a)^2/(d*x^4+c)^(1/2),x)
 

Output:

int((sqrt(c + d*x**4)*x**4)/(a**2*c + a**2*d*x**4 + 2*a*b*c*x**4 + 2*a*b*d 
*x**8 + b**2*c*x**8 + b**2*d*x**12),x)