\(\int \frac {A+B x^4}{a+b x^4} \, dx\) [13]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 164 \[ \int \frac {A+B x^4}{a+b x^4} \, dx=\frac {B x}{b}-\frac {(A b-a B) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{5/4}}+\frac {(A b-a B) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{5/4}}+\frac {(A b-a B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x}{\sqrt {a}+\sqrt {b} x^2}\right )}{2 \sqrt {2} a^{3/4} b^{5/4}} \] Output:

B*x/b+1/4*(A*b-B*a)*arctan(-1+2^(1/2)*b^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/b 
^(5/4)+1/4*(A*b-B*a)*arctan(1+2^(1/2)*b^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/b 
^(5/4)+1/4*(A*b-B*a)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*x/(a^(1/2)+b^(1/2)*x^ 
2))*2^(1/2)/a^(3/4)/b^(5/4)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.20 \[ \int \frac {A+B x^4}{a+b x^4} \, dx=\frac {8 a^{3/4} \sqrt [4]{b} B x-2 \sqrt {2} (A b-a B) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )+2 \sqrt {2} (A b-a B) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )-\sqrt {2} (A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )+\sqrt {2} (A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{8 a^{3/4} b^{5/4}} \] Input:

Integrate[(A + B*x^4)/(a + b*x^4),x]
 

Output:

(8*a^(3/4)*b^(1/4)*B*x - 2*Sqrt[2]*(A*b - a*B)*ArcTan[1 - (Sqrt[2]*b^(1/4) 
*x)/a^(1/4)] + 2*Sqrt[2]*(A*b - a*B)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4 
)] - Sqrt[2]*(A*b - a*B)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b] 
*x^2] + Sqrt[2]*(A*b - a*B)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt 
[b]*x^2])/(8*a^(3/4)*b^(5/4))
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.34, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {913, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x^4}{a+b x^4} \, dx\)

\(\Big \downarrow \) 913

\(\displaystyle \frac {(A b-a B) \int \frac {1}{b x^4+a}dx}{b}+\frac {B x}{b}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {(A b-a B) \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x^2}{b x^4+a}dx}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {b} x^2+\sqrt {a}}{b x^4+a}dx}{2 \sqrt {a}}\right )}{b}+\frac {B x}{b}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {(A b-a B) \left (\frac {\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}dx}{2 \sqrt {b}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}dx}{2 \sqrt {b}}}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {a}-\sqrt {b} x^2}{b x^4+a}dx}{2 \sqrt {a}}\right )}{b}+\frac {B x}{b}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {(A b-a B) \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x^2}{b x^4+a}dx}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}+\frac {B x}{b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {(A b-a B) \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x^2}{b x^4+a}dx}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}+\frac {B x}{b}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {(A b-a B) \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} x}{\sqrt [4]{b} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} x+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}+\frac {B x}{b}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {(A b-a B) \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} x}{\sqrt [4]{b} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} x+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}+\frac {B x}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A b-a B) \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} x}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} x+\sqrt [4]{a}}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}dx}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}+\frac {B x}{b}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {(A b-a B) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{b}+\frac {B x}{b}\)

Input:

Int[(A + B*x^4)/(a + b*x^4),x]
 

Output:

(B*x)/b + ((A*b - a*B)*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)]/(Sqrt[2 
]*a^(1/4)*b^(1/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^( 
1/4)*b^(1/4)))/(2*Sqrt[a]) + (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x 
 + Sqrt[b]*x^2]/(Sqrt[2]*a^(1/4)*b^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)* 
b^(1/4)*x + Sqrt[b]*x^2]/(2*Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[a])))/b
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 913
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Si 
mp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(p + 1) + 1))), x] - Simp[(a*d - b*c*(n*( 
p + 1) + 1))/(b*(n*(p + 1) + 1))   Int[(a + b*x^n)^p, x], x] /; FreeQ[{a, b 
, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.26

method result size
risch \(\frac {B x}{b}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (A b -B a \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 b^{2}}\) \(42\)
default \(\frac {B x}{b}+\frac {\left (A b -B a \right ) \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b a}\) \(120\)

Input:

int((B*x^4+A)/(b*x^4+a),x,method=_RETURNVERBOSE)
 

Output:

B*x/b+1/4/b^2*sum((A*b-B*a)/_R^3*ln(x-_R),_R=RootOf(_Z^4*b+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 560, normalized size of antiderivative = 3.41 \[ \int \frac {A+B x^4}{a+b x^4} \, dx=\frac {b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (a b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac {1}{4}} - {\left (B a - A b\right )} x\right ) + i \, b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (i \, a b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac {1}{4}} - {\left (B a - A b\right )} x\right ) - i \, b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (-i \, a b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac {1}{4}} - {\left (B a - A b\right )} x\right ) - b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (-a b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac {1}{4}} - {\left (B a - A b\right )} x\right ) + 4 \, B x}{4 \, b} \] Input:

integrate((B*x^4+A)/(b*x^4+a),x, algorithm="fricas")
 

Output:

1/4*(b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^ 
4*b^4)/(a^3*b^5))^(1/4)*log(a*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2 
*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5))^(1/4) - (B*a - A*b)*x) + I*b*(- 
(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a 
^3*b^5))^(1/4)*log(I*a*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 
4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5))^(1/4) - (B*a - A*b)*x) - I*b*(-(B^4*a^ 
4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5) 
)^(1/4)*log(-I*a*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3* 
B*a*b^3 + A^4*b^4)/(a^3*b^5))^(1/4) - (B*a - A*b)*x) - b*(-(B^4*a^4 - 4*A* 
B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5))^(1/4)* 
log(-a*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + 
A^4*b^4)/(a^3*b^5))^(1/4) - (B*a - A*b)*x) + 4*B*x)/b
 

Sympy [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.53 \[ \int \frac {A+B x^4}{a+b x^4} \, dx=\frac {B x}{b} + \operatorname {RootSum} {\left (256 t^{4} a^{3} b^{5} + A^{4} b^{4} - 4 A^{3} B a b^{3} + 6 A^{2} B^{2} a^{2} b^{2} - 4 A B^{3} a^{3} b + B^{4} a^{4}, \left ( t \mapsto t \log {\left (- \frac {4 t a b}{- A b + B a} + x \right )} \right )\right )} \] Input:

integrate((B*x**4+A)/(b*x**4+a),x)
 

Output:

B*x/b + RootSum(256*_t**4*a**3*b**5 + A**4*b**4 - 4*A**3*B*a*b**3 + 6*A**2 
*B**2*a**2*b**2 - 4*A*B**3*a**3*b + B**4*a**4, Lambda(_t, _t*log(-4*_t*a*b 
/(-A*b + B*a) + x)))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.29 \[ \int \frac {A+B x^4}{a+b x^4} \, dx=\frac {B x}{b} - \frac {\frac {2 \, \sqrt {2} {\left (B a - A b\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} {\left (B a - A b\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} {\left (B a - A b\right )} \log \left (\sqrt {b} x^{2} + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} {\left (B a - A b\right )} \log \left (\sqrt {b} x^{2} - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}}}{8 \, b} \] Input:

integrate((B*x^4+A)/(b*x^4+a),x, algorithm="maxima")
 

Output:

B*x/b - 1/8*(2*sqrt(2)*(B*a - A*b)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x + sqrt( 
2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) 
 + 2*sqrt(2)*(B*a - A*b)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x - sqrt(2)*a^(1/4) 
*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + sqrt(2) 
*(B*a - A*b)*log(sqrt(b)*x^2 + sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(3/ 
4)*b^(1/4)) - sqrt(2)*(B*a - A*b)*log(sqrt(b)*x^2 - sqrt(2)*a^(1/4)*b^(1/4 
)*x + sqrt(a))/(a^(3/4)*b^(1/4)))/b
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 245 vs. \(2 (117) = 234\).

Time = 0.13 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.49 \[ \int \frac {A+B x^4}{a+b x^4} \, dx=\frac {B x}{b} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} B a - \left (a b^{3}\right )^{\frac {1}{4}} A b\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{2}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} B a - \left (a b^{3}\right )^{\frac {1}{4}} A b\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{2}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} B a - \left (a b^{3}\right )^{\frac {1}{4}} A b\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{2}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} B a - \left (a b^{3}\right )^{\frac {1}{4}} A b\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{2}} \] Input:

integrate((B*x^4+A)/(b*x^4+a),x, algorithm="giac")
 

Output:

B*x/b - 1/4*sqrt(2)*((a*b^3)^(1/4)*B*a - (a*b^3)^(1/4)*A*b)*arctan(1/2*sqr 
t(2)*(2*x + sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^2) - 1/4*sqrt(2)*((a*b^ 
3)^(1/4)*B*a - (a*b^3)^(1/4)*A*b)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^ 
(1/4))/(a/b)^(1/4))/(a*b^2) - 1/8*sqrt(2)*((a*b^3)^(1/4)*B*a - (a*b^3)^(1/ 
4)*A*b)*log(x^2 + sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a*b^2) + 1/8*sqrt(2) 
*((a*b^3)^(1/4)*B*a - (a*b^3)^(1/4)*A*b)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + 
 sqrt(a/b))/(a*b^2)
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 720, normalized size of antiderivative = 4.39 \[ \int \frac {A+B x^4}{a+b x^4} \, dx =\text {Too large to display} \] Input:

int((A + B*x^4)/(a + b*x^4),x)
 

Output:

(B*x)/b - (atan((((A*b - B*a)*(x*(4*A^2*b^3 + 4*B^2*a^2*b - 8*A*B*a*b^2) - 
 ((16*B*a^2*b^2 - 16*A*a*b^3)*(A*b - B*a))/(4*(-a)^(3/4)*b^(5/4)))*1i)/(4* 
(-a)^(3/4)*b^(5/4)) + ((A*b - B*a)*(x*(4*A^2*b^3 + 4*B^2*a^2*b - 8*A*B*a*b 
^2) + ((16*B*a^2*b^2 - 16*A*a*b^3)*(A*b - B*a))/(4*(-a)^(3/4)*b^(5/4)))*1i 
)/(4*(-a)^(3/4)*b^(5/4)))/(((A*b - B*a)*(x*(4*A^2*b^3 + 4*B^2*a^2*b - 8*A* 
B*a*b^2) - ((16*B*a^2*b^2 - 16*A*a*b^3)*(A*b - B*a))/(4*(-a)^(3/4)*b^(5/4) 
)))/(4*(-a)^(3/4)*b^(5/4)) - ((A*b - B*a)*(x*(4*A^2*b^3 + 4*B^2*a^2*b - 8* 
A*B*a*b^2) + ((16*B*a^2*b^2 - 16*A*a*b^3)*(A*b - B*a))/(4*(-a)^(3/4)*b^(5/ 
4))))/(4*(-a)^(3/4)*b^(5/4))))*(A*b - B*a)*1i)/(2*(-a)^(3/4)*b^(5/4)) - (a 
tan((((A*b - B*a)*(x*(4*A^2*b^3 + 4*B^2*a^2*b - 8*A*B*a*b^2) - ((16*B*a^2* 
b^2 - 16*A*a*b^3)*(A*b - B*a)*1i)/(4*(-a)^(3/4)*b^(5/4))))/(4*(-a)^(3/4)*b 
^(5/4)) + ((A*b - B*a)*(x*(4*A^2*b^3 + 4*B^2*a^2*b - 8*A*B*a*b^2) + ((16*B 
*a^2*b^2 - 16*A*a*b^3)*(A*b - B*a)*1i)/(4*(-a)^(3/4)*b^(5/4))))/(4*(-a)^(3 
/4)*b^(5/4)))/(((A*b - B*a)*(x*(4*A^2*b^3 + 4*B^2*a^2*b - 8*A*B*a*b^2) - ( 
(16*B*a^2*b^2 - 16*A*a*b^3)*(A*b - B*a)*1i)/(4*(-a)^(3/4)*b^(5/4)))*1i)/(4 
*(-a)^(3/4)*b^(5/4)) - ((A*b - B*a)*(x*(4*A^2*b^3 + 4*B^2*a^2*b - 8*A*B*a* 
b^2) + ((16*B*a^2*b^2 - 16*A*a*b^3)*(A*b - B*a)*1i)/(4*(-a)^(3/4)*b^(5/4)) 
)*1i)/(4*(-a)^(3/4)*b^(5/4))))*(A*b - B*a))/(2*(-a)^(3/4)*b^(5/4))
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 1, normalized size of antiderivative = 0.01 \[ \int \frac {A+B x^4}{a+b x^4} \, dx=x \] Input:

int((B*x^4+A)/(b*x^4+a),x)
 

Output:

x