\(\int \frac {x^{14} (c+d x^4)}{(a+b x^4)^{7/2}} \, dx\) [64]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 350 \[ \int \frac {x^{14} \left (c+d x^4\right )}{\left (a+b x^4\right )^{7/2}} \, dx=-\frac {(b c-a d) x^{11}}{10 b^2 \left (a+b x^4\right )^{5/2}}-\frac {(11 b c-21 a d) x^7}{60 b^3 \left (a+b x^4\right )^{3/2}}-\frac {(77 b c-207 a d) x^3}{120 b^4 \sqrt {a+b x^4}}+\frac {d x^3 \sqrt {a+b x^4}}{5 b^4}+\frac {77 (b c-3 a d) x \sqrt {a+b x^4}}{40 b^{9/2} \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {77 \sqrt [4]{a} (b c-3 a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{40 b^{19/4} \sqrt {a+b x^4}}+\frac {77 \sqrt [4]{a} (b c-3 a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{80 b^{19/4} \sqrt {a+b x^4}} \] Output:

-1/10*(-a*d+b*c)*x^11/b^2/(b*x^4+a)^(5/2)-1/60*(-21*a*d+11*b*c)*x^7/b^3/(b 
*x^4+a)^(3/2)-1/120*(-207*a*d+77*b*c)*x^3/b^4/(b*x^4+a)^(1/2)+1/5*d*x^3*(b 
*x^4+a)^(1/2)/b^4+77/40*(-3*a*d+b*c)*x*(b*x^4+a)^(1/2)/b^(9/2)/(a^(1/2)+b^ 
(1/2)*x^2)-77/40*a^(1/4)*(-3*a*d+b*c)*(a^(1/2)+b^(1/2)*x^2)*((b*x^4+a)/(a^ 
(1/2)+b^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2 
*2^(1/2))/b^(19/4)/(b*x^4+a)^(1/2)+77/80*a^(1/4)*(-3*a*d+b*c)*(a^(1/2)+b^( 
1/2)*x^2)*((b*x^4+a)/(a^(1/2)+b^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arct 
an(b^(1/4)*x/a^(1/4)),1/2*2^(1/2))/b^(19/4)/(b*x^4+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.12 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.37 \[ \int \frac {x^{14} \left (c+d x^4\right )}{\left (a+b x^4\right )^{7/2}} \, dx=\frac {x^3 \left (-165 a^3 d+5 a b^2 x^4 \left (11 c-9 d x^4\right )+55 a^2 b \left (c-3 d x^4\right )+3 b^3 x^8 \left (5 c+d x^4\right )+55 (-b c+3 a d) \left (a+b x^4\right )^2 \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {7}{2},\frac {7}{4},-\frac {b x^4}{a}\right )\right )}{15 b^4 \left (a+b x^4\right )^{5/2}} \] Input:

Integrate[(x^14*(c + d*x^4))/(a + b*x^4)^(7/2),x]
 

Output:

(x^3*(-165*a^3*d + 5*a*b^2*x^4*(11*c - 9*d*x^4) + 55*a^2*b*(c - 3*d*x^4) + 
 3*b^3*x^8*(5*c + d*x^4) + 55*(-(b*c) + 3*a*d)*(a + b*x^4)^2*Sqrt[1 + (b*x 
^4)/a]*Hypergeometric2F1[3/4, 7/2, 7/4, -((b*x^4)/a)]))/(15*b^4*(a + b*x^4 
)^(5/2))
 

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 335, normalized size of antiderivative = 0.96, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {959, 817, 817, 817, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{14} \left (c+d x^4\right )}{\left (a+b x^4\right )^{7/2}} \, dx\)

\(\Big \downarrow \) 959

\(\displaystyle \frac {(b c-3 a d) \int \frac {x^{14}}{\left (b x^4+a\right )^{7/2}}dx}{b}+\frac {d x^{15}}{5 b \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {(b c-3 a d) \left (\frac {11 \int \frac {x^{10}}{\left (b x^4+a\right )^{5/2}}dx}{10 b}-\frac {x^{11}}{10 b \left (a+b x^4\right )^{5/2}}\right )}{b}+\frac {d x^{15}}{5 b \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {(b c-3 a d) \left (\frac {11 \left (\frac {7 \int \frac {x^6}{\left (b x^4+a\right )^{3/2}}dx}{6 b}-\frac {x^7}{6 b \left (a+b x^4\right )^{3/2}}\right )}{10 b}-\frac {x^{11}}{10 b \left (a+b x^4\right )^{5/2}}\right )}{b}+\frac {d x^{15}}{5 b \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {(b c-3 a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \int \frac {x^2}{\sqrt {b x^4+a}}dx}{2 b}-\frac {x^3}{2 b \sqrt {a+b x^4}}\right )}{6 b}-\frac {x^7}{6 b \left (a+b x^4\right )^{3/2}}\right )}{10 b}-\frac {x^{11}}{10 b \left (a+b x^4\right )^{5/2}}\right )}{b}+\frac {d x^{15}}{5 b \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {(b c-3 a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \left (\frac {\sqrt {a} \int \frac {1}{\sqrt {b x^4+a}}dx}{\sqrt {b}}-\frac {\sqrt {a} \int \frac {\sqrt {a}-\sqrt {b} x^2}{\sqrt {a} \sqrt {b x^4+a}}dx}{\sqrt {b}}\right )}{2 b}-\frac {x^3}{2 b \sqrt {a+b x^4}}\right )}{6 b}-\frac {x^7}{6 b \left (a+b x^4\right )^{3/2}}\right )}{10 b}-\frac {x^{11}}{10 b \left (a+b x^4\right )^{5/2}}\right )}{b}+\frac {d x^{15}}{5 b \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(b c-3 a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \left (\frac {\sqrt {a} \int \frac {1}{\sqrt {b x^4+a}}dx}{\sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x^2}{\sqrt {b x^4+a}}dx}{\sqrt {b}}\right )}{2 b}-\frac {x^3}{2 b \sqrt {a+b x^4}}\right )}{6 b}-\frac {x^7}{6 b \left (a+b x^4\right )^{3/2}}\right )}{10 b}-\frac {x^{11}}{10 b \left (a+b x^4\right )^{5/2}}\right )}{b}+\frac {d x^{15}}{5 b \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {(b c-3 a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^4}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x^2}{\sqrt {b x^4+a}}dx}{\sqrt {b}}\right )}{2 b}-\frac {x^3}{2 b \sqrt {a+b x^4}}\right )}{6 b}-\frac {x^7}{6 b \left (a+b x^4\right )^{3/2}}\right )}{10 b}-\frac {x^{11}}{10 b \left (a+b x^4\right )^{5/2}}\right )}{b}+\frac {d x^{15}}{5 b \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {(b c-3 a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^4}}-\frac {\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{b} \sqrt {a+b x^4}}-\frac {x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}}{\sqrt {b}}\right )}{2 b}-\frac {x^3}{2 b \sqrt {a+b x^4}}\right )}{6 b}-\frac {x^7}{6 b \left (a+b x^4\right )^{3/2}}\right )}{10 b}-\frac {x^{11}}{10 b \left (a+b x^4\right )^{5/2}}\right )}{b}+\frac {d x^{15}}{5 b \left (a+b x^4\right )^{5/2}}\)

Input:

Int[(x^14*(c + d*x^4))/(a + b*x^4)^(7/2),x]
 

Output:

(d*x^15)/(5*b*(a + b*x^4)^(5/2)) + ((b*c - 3*a*d)*(-1/10*x^11/(b*(a + b*x^ 
4)^(5/2)) + (11*(-1/6*x^7/(b*(a + b*x^4)^(3/2)) + (7*(-1/2*x^3/(b*Sqrt[a + 
 b*x^4]) + (3*(-((-((x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt[b]*x^2)) + (a^(1/4 
)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*Elli 
pticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(b^(1/4)*Sqrt[a + b*x^4]))/Sqrt 
[b]) + (a^(1/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b 
]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*b^(3/4)*Sqrt[a 
 + b*x^4])))/(2*b)))/(6*b)))/(10*b)))/b
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 959
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p 
+ 1) + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m + n*(p 
 + 1) + 1))   Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, 
 n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[m + n*(p + 1) + 1, 0]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 8.10 (sec) , antiderivative size = 259, normalized size of antiderivative = 0.74

method result size
elliptic \(\frac {a^{2} x^{3} \left (a d -c b \right ) \sqrt {b \,x^{4}+a}}{10 b^{7} \left (x^{4}+\frac {a}{b}\right )^{3}}-\frac {a \,x^{3} \left (33 a d -23 c b \right ) \sqrt {b \,x^{4}+a}}{60 b^{6} \left (x^{4}+\frac {a}{b}\right )^{2}}+\frac {x^{3} \left (87 a d -37 c b \right )}{40 b^{4} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {d \,x^{3} \sqrt {b \,x^{4}+a}}{5 b^{4}}+\frac {i \left (-\frac {3 a d -c b}{b^{4}}-\frac {87 a d -37 c b}{40 b^{4}}-\frac {3 d a}{5 b^{4}}\right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\) \(259\)
default \(c \left (-\frac {a^{2} x^{3} \sqrt {b \,x^{4}+a}}{10 b^{6} \left (x^{4}+\frac {a}{b}\right )^{3}}+\frac {23 a \,x^{3} \sqrt {b \,x^{4}+a}}{60 b^{5} \left (x^{4}+\frac {a}{b}\right )^{2}}-\frac {37 x^{3}}{40 b^{3} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {77 i \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{40 b^{\frac {7}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+d \left (\frac {a^{3} x^{3} \sqrt {b \,x^{4}+a}}{10 b^{7} \left (x^{4}+\frac {a}{b}\right )^{3}}-\frac {11 a^{2} x^{3} \sqrt {b \,x^{4}+a}}{20 b^{6} \left (x^{4}+\frac {a}{b}\right )^{2}}+\frac {87 a \,x^{3}}{40 b^{4} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {x^{3} \sqrt {b \,x^{4}+a}}{5 b^{4}}-\frac {231 i a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{40 b^{\frac {9}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )\) \(382\)
risch \(\frac {d \,x^{3} \sqrt {b \,x^{4}+a}}{5 b^{4}}-\frac {\frac {i \left (18 a d -5 c b \right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}-15 a \left (2 a d -c b \right ) \left (\frac {x^{3}}{2 a \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {i \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\right )+5 a^{2} \left (4 a d -3 c b \right ) \left (\frac {x^{3} \sqrt {b \,x^{4}+a}}{6 a \,b^{2} \left (x^{4}+\frac {a}{b}\right )^{2}}+\frac {x^{3}}{4 a^{2} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {i \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{4 a^{\frac {3}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\right )-5 a^{3} \left (a d -c b \right ) \left (\frac {x^{3} \sqrt {b \,x^{4}+a}}{10 a \,b^{3} \left (x^{4}+\frac {a}{b}\right )^{3}}+\frac {7 x^{3} \sqrt {b \,x^{4}+a}}{60 a^{2} b^{2} \left (x^{4}+\frac {a}{b}\right )^{2}}+\frac {7 x^{3}}{40 a^{3} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {7 i \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{40 a^{\frac {5}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\right )}{5 b^{4}}\) \(617\)

Input:

int(x^14*(d*x^4+c)/(b*x^4+a)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

1/10*a^2*x^3/b^7*(a*d-b*c)*(b*x^4+a)^(1/2)/(x^4+a/b)^3-1/60*a*x^3*(33*a*d- 
23*b*c)/b^6*(b*x^4+a)^(1/2)/(x^4+a/b)^2+1/40/b^4*x^3*(87*a*d-37*b*c)/((x^4 
+a/b)*b)^(1/2)+1/5*d*x^3*(b*x^4+a)^(1/2)/b^4+I*(-1/b^4*(3*a*d-b*c)-1/40/b^ 
4*(87*a*d-37*b*c)-3/5/b^4*d*a)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1 
/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^( 
1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1 
/2))^(1/2),I))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 340, normalized size of antiderivative = 0.97 \[ \int \frac {x^{14} \left (c+d x^4\right )}{\left (a+b x^4\right )^{7/2}} \, dx=\frac {231 \, {\left ({\left (b^{4} c - 3 \, a b^{3} d\right )} x^{13} + 3 \, {\left (a b^{3} c - 3 \, a^{2} b^{2} d\right )} x^{9} + 3 \, {\left (a^{2} b^{2} c - 3 \, a^{3} b d\right )} x^{5} + {\left (a^{3} b c - 3 \, a^{4} d\right )} x\right )} \sqrt {b} \left (-\frac {a}{b}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) - 231 \, {\left ({\left (b^{4} c - 3 \, a b^{3} d\right )} x^{13} + 3 \, {\left (a b^{3} c - 3 \, a^{2} b^{2} d\right )} x^{9} + 3 \, {\left (a^{2} b^{2} c - 3 \, a^{3} b d\right )} x^{5} + {\left (a^{3} b c - 3 \, a^{4} d\right )} x\right )} \sqrt {b} \left (-\frac {a}{b}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (24 \, b^{4} d x^{16} + 120 \, {\left (b^{4} c - 3 \, a b^{3} d\right )} x^{12} + 517 \, {\left (a b^{3} c - 3 \, a^{2} b^{2} d\right )} x^{8} + 231 \, a^{3} b c - 693 \, a^{4} d + 616 \, {\left (a^{2} b^{2} c - 3 \, a^{3} b d\right )} x^{4}\right )} \sqrt {b x^{4} + a}}{120 \, {\left (b^{8} x^{13} + 3 \, a b^{7} x^{9} + 3 \, a^{2} b^{6} x^{5} + a^{3} b^{5} x\right )}} \] Input:

integrate(x^14*(d*x^4+c)/(b*x^4+a)^(7/2),x, algorithm="fricas")
 

Output:

1/120*(231*((b^4*c - 3*a*b^3*d)*x^13 + 3*(a*b^3*c - 3*a^2*b^2*d)*x^9 + 3*( 
a^2*b^2*c - 3*a^3*b*d)*x^5 + (a^3*b*c - 3*a^4*d)*x)*sqrt(b)*(-a/b)^(3/4)*e 
lliptic_e(arcsin((-a/b)^(1/4)/x), -1) - 231*((b^4*c - 3*a*b^3*d)*x^13 + 3* 
(a*b^3*c - 3*a^2*b^2*d)*x^9 + 3*(a^2*b^2*c - 3*a^3*b*d)*x^5 + (a^3*b*c - 3 
*a^4*d)*x)*sqrt(b)*(-a/b)^(3/4)*elliptic_f(arcsin((-a/b)^(1/4)/x), -1) + ( 
24*b^4*d*x^16 + 120*(b^4*c - 3*a*b^3*d)*x^12 + 517*(a*b^3*c - 3*a^2*b^2*d) 
*x^8 + 231*a^3*b*c - 693*a^4*d + 616*(a^2*b^2*c - 3*a^3*b*d)*x^4)*sqrt(b*x 
^4 + a))/(b^8*x^13 + 3*a*b^7*x^9 + 3*a^2*b^6*x^5 + a^3*b^5*x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{14} \left (c+d x^4\right )}{\left (a+b x^4\right )^{7/2}} \, dx=\text {Timed out} \] Input:

integrate(x**14*(d*x**4+c)/(b*x**4+a)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^{14} \left (c+d x^4\right )}{\left (a+b x^4\right )^{7/2}} \, dx=\int { \frac {{\left (d x^{4} + c\right )} x^{14}}{{\left (b x^{4} + a\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate(x^14*(d*x^4+c)/(b*x^4+a)^(7/2),x, algorithm="maxima")
 

Output:

integrate((d*x^4 + c)*x^14/(b*x^4 + a)^(7/2), x)
 

Giac [F]

\[ \int \frac {x^{14} \left (c+d x^4\right )}{\left (a+b x^4\right )^{7/2}} \, dx=\int { \frac {{\left (d x^{4} + c\right )} x^{14}}{{\left (b x^{4} + a\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate(x^14*(d*x^4+c)/(b*x^4+a)^(7/2),x, algorithm="giac")
 

Output:

integrate((d*x^4 + c)*x^14/(b*x^4 + a)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{14} \left (c+d x^4\right )}{\left (a+b x^4\right )^{7/2}} \, dx=\int \frac {x^{14}\,\left (d\,x^4+c\right )}{{\left (b\,x^4+a\right )}^{7/2}} \,d x \] Input:

int((x^14*(c + d*x^4))/(a + b*x^4)^(7/2),x)
 

Output:

int((x^14*(c + d*x^4))/(a + b*x^4)^(7/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {x^{14} \left (c+d x^4\right )}{\left (a+b x^4\right )^{7/2}} \, dx=\frac {-165 \sqrt {b \,x^{4}+a}\, a^{3} d \,x^{3}+55 \sqrt {b \,x^{4}+a}\, a^{2} b c \,x^{3}-165 \sqrt {b \,x^{4}+a}\, a^{2} b d \,x^{7}+55 \sqrt {b \,x^{4}+a}\, a \,b^{2} c \,x^{7}-45 \sqrt {b \,x^{4}+a}\, a \,b^{2} d \,x^{11}+15 \sqrt {b \,x^{4}+a}\, b^{3} c \,x^{11}+3 \sqrt {b \,x^{4}+a}\, b^{3} d \,x^{15}+495 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{4} x^{16}+4 a \,b^{3} x^{12}+6 a^{2} b^{2} x^{8}+4 a^{3} b \,x^{4}+a^{4}}d x \right ) a^{7} d -165 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{4} x^{16}+4 a \,b^{3} x^{12}+6 a^{2} b^{2} x^{8}+4 a^{3} b \,x^{4}+a^{4}}d x \right ) a^{6} b c +1485 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{4} x^{16}+4 a \,b^{3} x^{12}+6 a^{2} b^{2} x^{8}+4 a^{3} b \,x^{4}+a^{4}}d x \right ) a^{6} b d \,x^{4}-495 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{4} x^{16}+4 a \,b^{3} x^{12}+6 a^{2} b^{2} x^{8}+4 a^{3} b \,x^{4}+a^{4}}d x \right ) a^{5} b^{2} c \,x^{4}+1485 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{4} x^{16}+4 a \,b^{3} x^{12}+6 a^{2} b^{2} x^{8}+4 a^{3} b \,x^{4}+a^{4}}d x \right ) a^{5} b^{2} d \,x^{8}-495 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{4} x^{16}+4 a \,b^{3} x^{12}+6 a^{2} b^{2} x^{8}+4 a^{3} b \,x^{4}+a^{4}}d x \right ) a^{4} b^{3} c \,x^{8}+495 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{4} x^{16}+4 a \,b^{3} x^{12}+6 a^{2} b^{2} x^{8}+4 a^{3} b \,x^{4}+a^{4}}d x \right ) a^{4} b^{3} d \,x^{12}-165 \left (\int \frac {\sqrt {b \,x^{4}+a}\, x^{2}}{b^{4} x^{16}+4 a \,b^{3} x^{12}+6 a^{2} b^{2} x^{8}+4 a^{3} b \,x^{4}+a^{4}}d x \right ) a^{3} b^{4} c \,x^{12}}{15 b^{4} \left (b^{3} x^{12}+3 a \,b^{2} x^{8}+3 a^{2} b \,x^{4}+a^{3}\right )} \] Input:

int(x^14*(d*x^4+c)/(b*x^4+a)^(7/2),x)
 

Output:

( - 165*sqrt(a + b*x**4)*a**3*d*x**3 + 55*sqrt(a + b*x**4)*a**2*b*c*x**3 - 
 165*sqrt(a + b*x**4)*a**2*b*d*x**7 + 55*sqrt(a + b*x**4)*a*b**2*c*x**7 - 
45*sqrt(a + b*x**4)*a*b**2*d*x**11 + 15*sqrt(a + b*x**4)*b**3*c*x**11 + 3* 
sqrt(a + b*x**4)*b**3*d*x**15 + 495*int((sqrt(a + b*x**4)*x**2)/(a**4 + 4* 
a**3*b*x**4 + 6*a**2*b**2*x**8 + 4*a*b**3*x**12 + b**4*x**16),x)*a**7*d - 
165*int((sqrt(a + b*x**4)*x**2)/(a**4 + 4*a**3*b*x**4 + 6*a**2*b**2*x**8 + 
 4*a*b**3*x**12 + b**4*x**16),x)*a**6*b*c + 1485*int((sqrt(a + b*x**4)*x** 
2)/(a**4 + 4*a**3*b*x**4 + 6*a**2*b**2*x**8 + 4*a*b**3*x**12 + b**4*x**16) 
,x)*a**6*b*d*x**4 - 495*int((sqrt(a + b*x**4)*x**2)/(a**4 + 4*a**3*b*x**4 
+ 6*a**2*b**2*x**8 + 4*a*b**3*x**12 + b**4*x**16),x)*a**5*b**2*c*x**4 + 14 
85*int((sqrt(a + b*x**4)*x**2)/(a**4 + 4*a**3*b*x**4 + 6*a**2*b**2*x**8 + 
4*a*b**3*x**12 + b**4*x**16),x)*a**5*b**2*d*x**8 - 495*int((sqrt(a + b*x** 
4)*x**2)/(a**4 + 4*a**3*b*x**4 + 6*a**2*b**2*x**8 + 4*a*b**3*x**12 + b**4* 
x**16),x)*a**4*b**3*c*x**8 + 495*int((sqrt(a + b*x**4)*x**2)/(a**4 + 4*a** 
3*b*x**4 + 6*a**2*b**2*x**8 + 4*a*b**3*x**12 + b**4*x**16),x)*a**4*b**3*d* 
x**12 - 165*int((sqrt(a + b*x**4)*x**2)/(a**4 + 4*a**3*b*x**4 + 6*a**2*b** 
2*x**8 + 4*a*b**3*x**12 + b**4*x**16),x)*a**3*b**4*c*x**12)/(15*b**4*(a**3 
 + 3*a**2*b*x**4 + 3*a*b**2*x**8 + b**3*x**12))