\(\int \frac {c+d x^4}{x^6 (a+b x^4)^{7/2}} \, dx\) [69]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 387 \[ \int \frac {c+d x^4}{x^6 \left (a+b x^4\right )^{7/2}} \, dx=-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}-\frac {3 b c-a d}{10 a^2 x \left (a+b x^4\right )^{5/2}}-\frac {11 (3 b c-a d)}{60 a^3 x \left (a+b x^4\right )^{3/2}}-\frac {77 (3 b c-a d)}{120 a^4 x \sqrt {a+b x^4}}+\frac {77 (3 b c-a d) \sqrt {a+b x^4}}{40 a^5 x}-\frac {77 \sqrt {b} (3 b c-a d) x \sqrt {a+b x^4}}{40 a^5 \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {77 \sqrt [4]{b} (3 b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{40 a^{19/4} \sqrt {a+b x^4}}-\frac {77 \sqrt [4]{b} (3 b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{80 a^{19/4} \sqrt {a+b x^4}} \] Output:

-1/5*c/a/x^5/(b*x^4+a)^(5/2)-1/10*(-a*d+3*b*c)/a^2/x/(b*x^4+a)^(5/2)-11/60 
*(-a*d+3*b*c)/a^3/x/(b*x^4+a)^(3/2)-77/120*(-a*d+3*b*c)/a^4/x/(b*x^4+a)^(1 
/2)+77/40*(-a*d+3*b*c)*(b*x^4+a)^(1/2)/a^5/x-77/40*b^(1/2)*(-a*d+3*b*c)*x* 
(b*x^4+a)^(1/2)/a^5/(a^(1/2)+b^(1/2)*x^2)+77/40*b^(1/4)*(-a*d+3*b*c)*(a^(1 
/2)+b^(1/2)*x^2)*((b*x^4+a)/(a^(1/2)+b^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2 
*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))/a^(19/4)/(b*x^4+a)^(1/2)-77/80*b^ 
(1/4)*(-a*d+3*b*c)*(a^(1/2)+b^(1/2)*x^2)*((b*x^4+a)/(a^(1/2)+b^(1/2)*x^2)^ 
2)^(1/2)*InverseJacobiAM(2*arctan(b^(1/4)*x/a^(1/4)),1/2*2^(1/2))/a^(19/4) 
/(b*x^4+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.05 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.21 \[ \int \frac {c+d x^4}{x^6 \left (a+b x^4\right )^{7/2}} \, dx=\frac {-a^3 c-5 (-3 b c+a d) x^4 \left (a+b x^4\right )^2 \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {7}{2},\frac {3}{4},-\frac {b x^4}{a}\right )}{5 a^4 x^5 \left (a+b x^4\right )^{5/2}} \] Input:

Integrate[(c + d*x^4)/(x^6*(a + b*x^4)^(7/2)),x]
 

Output:

(-(a^3*c) - 5*(-3*b*c + a*d)*x^4*(a + b*x^4)^2*Sqrt[1 + (b*x^4)/a]*Hyperge 
ometric2F1[-1/4, 7/2, 3/4, -((b*x^4)/a)])/(5*a^4*x^5*(a + b*x^4)^(5/2))
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 362, normalized size of antiderivative = 0.94, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.409, Rules used = {955, 819, 819, 819, 847, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x^4}{x^6 \left (a+b x^4\right )^{7/2}} \, dx\)

\(\Big \downarrow \) 955

\(\displaystyle -\frac {(3 b c-a d) \int \frac {1}{x^2 \left (b x^4+a\right )^{7/2}}dx}{a}-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 819

\(\displaystyle -\frac {(3 b c-a d) \left (\frac {11 \int \frac {1}{x^2 \left (b x^4+a\right )^{5/2}}dx}{10 a}+\frac {1}{10 a x \left (a+b x^4\right )^{5/2}}\right )}{a}-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 819

\(\displaystyle -\frac {(3 b c-a d) \left (\frac {11 \left (\frac {7 \int \frac {1}{x^2 \left (b x^4+a\right )^{3/2}}dx}{6 a}+\frac {1}{6 a x \left (a+b x^4\right )^{3/2}}\right )}{10 a}+\frac {1}{10 a x \left (a+b x^4\right )^{5/2}}\right )}{a}-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 819

\(\displaystyle -\frac {(3 b c-a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \int \frac {1}{x^2 \sqrt {b x^4+a}}dx}{2 a}+\frac {1}{2 a x \sqrt {a+b x^4}}\right )}{6 a}+\frac {1}{6 a x \left (a+b x^4\right )^{3/2}}\right )}{10 a}+\frac {1}{10 a x \left (a+b x^4\right )^{5/2}}\right )}{a}-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 847

\(\displaystyle -\frac {(3 b c-a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \left (\frac {b \int \frac {x^2}{\sqrt {b x^4+a}}dx}{a}-\frac {\sqrt {a+b x^4}}{a x}\right )}{2 a}+\frac {1}{2 a x \sqrt {a+b x^4}}\right )}{6 a}+\frac {1}{6 a x \left (a+b x^4\right )^{3/2}}\right )}{10 a}+\frac {1}{10 a x \left (a+b x^4\right )^{5/2}}\right )}{a}-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 834

\(\displaystyle -\frac {(3 b c-a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \left (\frac {b \left (\frac {\sqrt {a} \int \frac {1}{\sqrt {b x^4+a}}dx}{\sqrt {b}}-\frac {\sqrt {a} \int \frac {\sqrt {a}-\sqrt {b} x^2}{\sqrt {a} \sqrt {b x^4+a}}dx}{\sqrt {b}}\right )}{a}-\frac {\sqrt {a+b x^4}}{a x}\right )}{2 a}+\frac {1}{2 a x \sqrt {a+b x^4}}\right )}{6 a}+\frac {1}{6 a x \left (a+b x^4\right )^{3/2}}\right )}{10 a}+\frac {1}{10 a x \left (a+b x^4\right )^{5/2}}\right )}{a}-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {(3 b c-a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \left (\frac {b \left (\frac {\sqrt {a} \int \frac {1}{\sqrt {b x^4+a}}dx}{\sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x^2}{\sqrt {b x^4+a}}dx}{\sqrt {b}}\right )}{a}-\frac {\sqrt {a+b x^4}}{a x}\right )}{2 a}+\frac {1}{2 a x \sqrt {a+b x^4}}\right )}{6 a}+\frac {1}{6 a x \left (a+b x^4\right )^{3/2}}\right )}{10 a}+\frac {1}{10 a x \left (a+b x^4\right )^{5/2}}\right )}{a}-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle -\frac {(3 b c-a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \left (\frac {b \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^4}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x^2}{\sqrt {b x^4+a}}dx}{\sqrt {b}}\right )}{a}-\frac {\sqrt {a+b x^4}}{a x}\right )}{2 a}+\frac {1}{2 a x \sqrt {a+b x^4}}\right )}{6 a}+\frac {1}{6 a x \left (a+b x^4\right )^{3/2}}\right )}{10 a}+\frac {1}{10 a x \left (a+b x^4\right )^{5/2}}\right )}{a}-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle -\frac {(3 b c-a d) \left (\frac {11 \left (\frac {7 \left (\frac {3 \left (\frac {b \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^4}}-\frac {\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{b} \sqrt {a+b x^4}}-\frac {x \sqrt {a+b x^4}}{\sqrt {a}+\sqrt {b} x^2}}{\sqrt {b}}\right )}{a}-\frac {\sqrt {a+b x^4}}{a x}\right )}{2 a}+\frac {1}{2 a x \sqrt {a+b x^4}}\right )}{6 a}+\frac {1}{6 a x \left (a+b x^4\right )^{3/2}}\right )}{10 a}+\frac {1}{10 a x \left (a+b x^4\right )^{5/2}}\right )}{a}-\frac {c}{5 a x^5 \left (a+b x^4\right )^{5/2}}\)

Input:

Int[(c + d*x^4)/(x^6*(a + b*x^4)^(7/2)),x]
 

Output:

-1/5*c/(a*x^5*(a + b*x^4)^(5/2)) - ((3*b*c - a*d)*(1/(10*a*x*(a + b*x^4)^( 
5/2)) + (11*(1/(6*a*x*(a + b*x^4)^(3/2)) + (7*(1/(2*a*x*Sqrt[a + b*x^4]) + 
 (3*(-(Sqrt[a + b*x^4]/(a*x)) + (b*(-((-((x*Sqrt[a + b*x^4])/(Sqrt[a] + Sq 
rt[b]*x^2)) + (a^(1/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + 
 Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(b^(1/4)*S 
qrt[a + b*x^4]))/Sqrt[b]) + (a^(1/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x 
^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/ 
2])/(2*b^(3/4)*Sqrt[a + b*x^4])))/a))/(2*a)))/(6*a)))/(10*a)))/a
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 955
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[c*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), 
 x] + Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1))   Int[(e 
*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b* 
c - a*d, 0] && (IntegerQ[n] || GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || 
(LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.99 (sec) , antiderivative size = 283, normalized size of antiderivative = 0.73

method result size
elliptic \(-\frac {c \sqrt {b \,x^{4}+a}}{5 a^{4} x^{5}}-\frac {\left (5 a d -18 c b \right ) \sqrt {b \,x^{4}+a}}{5 a^{5} x}-\frac {x^{3} \left (a d -c b \right ) \sqrt {b \,x^{4}+a}}{10 a^{3} b^{2} \left (x^{4}+\frac {a}{b}\right )^{3}}-\frac {x^{3} \left (17 a d -27 c b \right ) \sqrt {b \,x^{4}+a}}{60 a^{4} b \left (x^{4}+\frac {a}{b}\right )^{2}}-\frac {b \,x^{3} \left (37 a d -87 c b \right )}{40 a^{5} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {i \left (\frac {b \left (5 a d -18 c b \right )}{5 a^{5}}+\frac {b \left (37 a d -87 c b \right )}{40 a^{5}}\right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\) \(283\)
default \(c \left (-\frac {\sqrt {b \,x^{4}+a}}{5 a^{4} x^{5}}+\frac {18 b \sqrt {b \,x^{4}+a}}{5 a^{5} x}+\frac {x^{3} \sqrt {b \,x^{4}+a}}{10 a^{3} b \left (x^{4}+\frac {a}{b}\right )^{3}}+\frac {9 x^{3} \sqrt {b \,x^{4}+a}}{20 a^{4} \left (x^{4}+\frac {a}{b}\right )^{2}}+\frac {87 b^{2} x^{3}}{40 a^{5} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {231 i b^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{40 a^{\frac {9}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+d \left (-\frac {x^{3} \sqrt {b \,x^{4}+a}}{10 a^{2} b^{2} \left (x^{4}+\frac {a}{b}\right )^{3}}-\frac {17 x^{3} \sqrt {b \,x^{4}+a}}{60 a^{3} b \left (x^{4}+\frac {a}{b}\right )^{2}}-\frac {37 b \,x^{3}}{40 a^{4} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {\sqrt {b \,x^{4}+a}}{a^{4} x}+\frac {77 i \sqrt {b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{40 a^{\frac {7}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )\) \(419\)
risch \(-\frac {\sqrt {b \,x^{4}+a}\, \left (5 a d \,x^{4}-18 b c \,x^{4}+a c \right )}{5 a^{5} x^{5}}+\frac {b \left (\frac {i \left (5 a d -18 c b \right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}-5 a^{2} \left (a d -2 c b \right ) \left (\frac {x^{3} \sqrt {b \,x^{4}+a}}{6 a \,b^{2} \left (x^{4}+\frac {a}{b}\right )^{2}}+\frac {x^{3}}{4 a^{2} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {i \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{4 a^{\frac {3}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\right )-5 a^{3} \left (a d -c b \right ) \left (\frac {x^{3} \sqrt {b \,x^{4}+a}}{10 a \,b^{3} \left (x^{4}+\frac {a}{b}\right )^{3}}+\frac {7 x^{3} \sqrt {b \,x^{4}+a}}{60 a^{2} b^{2} \left (x^{4}+\frac {a}{b}\right )^{2}}+\frac {7 x^{3}}{40 a^{3} \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {7 i \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{40 a^{\frac {5}{2}} \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\right )-5 a \left (a d -3 c b \right ) \left (\frac {x^{3}}{2 a \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {i \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\right )\right )}{5 a^{5}}\) \(633\)

Input:

int((d*x^4+c)/x^6/(b*x^4+a)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-1/5/a^4*c*(b*x^4+a)^(1/2)/x^5-1/5/a^5*(5*a*d-18*b*c)*(b*x^4+a)^(1/2)/x-1/ 
10/a^3*x^3/b^2*(a*d-b*c)*(b*x^4+a)^(1/2)/(x^4+a/b)^3-1/60/a^4*x^3*(17*a*d- 
27*b*c)/b*(b*x^4+a)^(1/2)/(x^4+a/b)^2-1/40*b/a^5*x^3*(37*a*d-87*b*c)/((x^4 
+a/b)*b)^(1/2)+I*(1/5*b/a^5*(5*a*d-18*b*c)+1/40*b/a^5*(37*a*d-87*b*c))*a^( 
1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2 
)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/ 
2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 356, normalized size of antiderivative = 0.92 \[ \int \frac {c+d x^4}{x^6 \left (a+b x^4\right )^{7/2}} \, dx=\frac {231 \, {\left ({\left (3 \, b^{4} c - a b^{3} d\right )} x^{17} + 3 \, {\left (3 \, a b^{3} c - a^{2} b^{2} d\right )} x^{13} + 3 \, {\left (3 \, a^{2} b^{2} c - a^{3} b d\right )} x^{9} + {\left (3 \, a^{3} b c - a^{4} d\right )} x^{5}\right )} \sqrt {a} \left (-\frac {b}{a}\right )^{\frac {3}{4}} E(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) - 231 \, {\left ({\left (3 \, b^{4} c - a b^{3} d\right )} x^{17} + 3 \, {\left (3 \, a b^{3} c - a^{2} b^{2} d\right )} x^{13} + 3 \, {\left (3 \, a^{2} b^{2} c - a^{3} b d\right )} x^{9} + {\left (3 \, a^{3} b c - a^{4} d\right )} x^{5}\right )} \sqrt {a} \left (-\frac {b}{a}\right )^{\frac {3}{4}} F(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) + {\left (231 \, {\left (3 \, b^{4} c - a b^{3} d\right )} x^{16} + 616 \, {\left (3 \, a b^{3} c - a^{2} b^{2} d\right )} x^{12} + 517 \, {\left (3 \, a^{2} b^{2} c - a^{3} b d\right )} x^{8} - 24 \, a^{4} c + 120 \, {\left (3 \, a^{3} b c - a^{4} d\right )} x^{4}\right )} \sqrt {b x^{4} + a}}{120 \, {\left (a^{5} b^{3} x^{17} + 3 \, a^{6} b^{2} x^{13} + 3 \, a^{7} b x^{9} + a^{8} x^{5}\right )}} \] Input:

integrate((d*x^4+c)/x^6/(b*x^4+a)^(7/2),x, algorithm="fricas")
 

Output:

1/120*(231*((3*b^4*c - a*b^3*d)*x^17 + 3*(3*a*b^3*c - a^2*b^2*d)*x^13 + 3* 
(3*a^2*b^2*c - a^3*b*d)*x^9 + (3*a^3*b*c - a^4*d)*x^5)*sqrt(a)*(-b/a)^(3/4 
)*elliptic_e(arcsin(x*(-b/a)^(1/4)), -1) - 231*((3*b^4*c - a*b^3*d)*x^17 + 
 3*(3*a*b^3*c - a^2*b^2*d)*x^13 + 3*(3*a^2*b^2*c - a^3*b*d)*x^9 + (3*a^3*b 
*c - a^4*d)*x^5)*sqrt(a)*(-b/a)^(3/4)*elliptic_f(arcsin(x*(-b/a)^(1/4)), - 
1) + (231*(3*b^4*c - a*b^3*d)*x^16 + 616*(3*a*b^3*c - a^2*b^2*d)*x^12 + 51 
7*(3*a^2*b^2*c - a^3*b*d)*x^8 - 24*a^4*c + 120*(3*a^3*b*c - a^4*d)*x^4)*sq 
rt(b*x^4 + a))/(a^5*b^3*x^17 + 3*a^6*b^2*x^13 + 3*a^7*b*x^9 + a^8*x^5)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {c+d x^4}{x^6 \left (a+b x^4\right )^{7/2}} \, dx=\text {Timed out} \] Input:

integrate((d*x**4+c)/x**6/(b*x**4+a)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {c+d x^4}{x^6 \left (a+b x^4\right )^{7/2}} \, dx=\int { \frac {d x^{4} + c}{{\left (b x^{4} + a\right )}^{\frac {7}{2}} x^{6}} \,d x } \] Input:

integrate((d*x^4+c)/x^6/(b*x^4+a)^(7/2),x, algorithm="maxima")
 

Output:

integrate((d*x^4 + c)/((b*x^4 + a)^(7/2)*x^6), x)
 

Giac [F]

\[ \int \frac {c+d x^4}{x^6 \left (a+b x^4\right )^{7/2}} \, dx=\int { \frac {d x^{4} + c}{{\left (b x^{4} + a\right )}^{\frac {7}{2}} x^{6}} \,d x } \] Input:

integrate((d*x^4+c)/x^6/(b*x^4+a)^(7/2),x, algorithm="giac")
 

Output:

integrate((d*x^4 + c)/((b*x^4 + a)^(7/2)*x^6), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {c+d x^4}{x^6 \left (a+b x^4\right )^{7/2}} \, dx=\int \frac {d\,x^4+c}{x^6\,{\left (b\,x^4+a\right )}^{7/2}} \,d x \] Input:

int((c + d*x^4)/(x^6*(a + b*x^4)^(7/2)),x)
 

Output:

int((c + d*x^4)/(x^6*(a + b*x^4)^(7/2)), x)
 

Reduce [F]

\[ \int \frac {c+d x^4}{x^6 \left (a+b x^4\right )^{7/2}} \, dx=\frac {-\sqrt {b \,x^{4}+a}\, d -5 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{4} x^{22}+4 a \,b^{3} x^{18}+6 a^{2} b^{2} x^{14}+4 a^{3} b \,x^{10}+a^{4} x^{6}}d x \right ) a^{4} d \,x^{5}+15 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{4} x^{22}+4 a \,b^{3} x^{18}+6 a^{2} b^{2} x^{14}+4 a^{3} b \,x^{10}+a^{4} x^{6}}d x \right ) a^{3} b c \,x^{5}-15 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{4} x^{22}+4 a \,b^{3} x^{18}+6 a^{2} b^{2} x^{14}+4 a^{3} b \,x^{10}+a^{4} x^{6}}d x \right ) a^{3} b d \,x^{9}+45 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{4} x^{22}+4 a \,b^{3} x^{18}+6 a^{2} b^{2} x^{14}+4 a^{3} b \,x^{10}+a^{4} x^{6}}d x \right ) a^{2} b^{2} c \,x^{9}-15 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{4} x^{22}+4 a \,b^{3} x^{18}+6 a^{2} b^{2} x^{14}+4 a^{3} b \,x^{10}+a^{4} x^{6}}d x \right ) a^{2} b^{2} d \,x^{13}+45 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{4} x^{22}+4 a \,b^{3} x^{18}+6 a^{2} b^{2} x^{14}+4 a^{3} b \,x^{10}+a^{4} x^{6}}d x \right ) a \,b^{3} c \,x^{13}-5 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{4} x^{22}+4 a \,b^{3} x^{18}+6 a^{2} b^{2} x^{14}+4 a^{3} b \,x^{10}+a^{4} x^{6}}d x \right ) a \,b^{3} d \,x^{17}+15 \left (\int \frac {\sqrt {b \,x^{4}+a}}{b^{4} x^{22}+4 a \,b^{3} x^{18}+6 a^{2} b^{2} x^{14}+4 a^{3} b \,x^{10}+a^{4} x^{6}}d x \right ) b^{4} c \,x^{17}}{15 b \,x^{5} \left (b^{3} x^{12}+3 a \,b^{2} x^{8}+3 a^{2} b \,x^{4}+a^{3}\right )} \] Input:

int((d*x^4+c)/x^6/(b*x^4+a)^(7/2),x)
 

Output:

( - sqrt(a + b*x**4)*d - 5*int(sqrt(a + b*x**4)/(a**4*x**6 + 4*a**3*b*x**1 
0 + 6*a**2*b**2*x**14 + 4*a*b**3*x**18 + b**4*x**22),x)*a**4*d*x**5 + 15*i 
nt(sqrt(a + b*x**4)/(a**4*x**6 + 4*a**3*b*x**10 + 6*a**2*b**2*x**14 + 4*a* 
b**3*x**18 + b**4*x**22),x)*a**3*b*c*x**5 - 15*int(sqrt(a + b*x**4)/(a**4* 
x**6 + 4*a**3*b*x**10 + 6*a**2*b**2*x**14 + 4*a*b**3*x**18 + b**4*x**22),x 
)*a**3*b*d*x**9 + 45*int(sqrt(a + b*x**4)/(a**4*x**6 + 4*a**3*b*x**10 + 6* 
a**2*b**2*x**14 + 4*a*b**3*x**18 + b**4*x**22),x)*a**2*b**2*c*x**9 - 15*in 
t(sqrt(a + b*x**4)/(a**4*x**6 + 4*a**3*b*x**10 + 6*a**2*b**2*x**14 + 4*a*b 
**3*x**18 + b**4*x**22),x)*a**2*b**2*d*x**13 + 45*int(sqrt(a + b*x**4)/(a* 
*4*x**6 + 4*a**3*b*x**10 + 6*a**2*b**2*x**14 + 4*a*b**3*x**18 + b**4*x**22 
),x)*a*b**3*c*x**13 - 5*int(sqrt(a + b*x**4)/(a**4*x**6 + 4*a**3*b*x**10 + 
 6*a**2*b**2*x**14 + 4*a*b**3*x**18 + b**4*x**22),x)*a*b**3*d*x**17 + 15*i 
nt(sqrt(a + b*x**4)/(a**4*x**6 + 4*a**3*b*x**10 + 6*a**2*b**2*x**14 + 4*a* 
b**3*x**18 + b**4*x**22),x)*b**4*c*x**17)/(15*b*x**5*(a**3 + 3*a**2*b*x**4 
 + 3*a*b**2*x**8 + b**3*x**12))