\(\int \frac {1}{x^4 (a+b x^6)^2 \sqrt {c+d x^6}} \, dx\) [82]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 149 \[ \int \frac {1}{x^4 \left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx=-\frac {(3 b c-2 a d) \sqrt {c+d x^6}}{6 a^2 c (b c-a d) x^3}+\frac {b \sqrt {c+d x^6}}{6 a (b c-a d) x^3 \left (a+b x^6\right )}-\frac {b (3 b c-4 a d) \arctan \left (\frac {\sqrt {b c-a d} x^3}{\sqrt {a} \sqrt {c+d x^6}}\right )}{6 a^{5/2} (b c-a d)^{3/2}} \] Output:

-1/6*(-2*a*d+3*b*c)*(d*x^6+c)^(1/2)/a^2/c/(-a*d+b*c)/x^3+1/6*b*(d*x^6+c)^( 
1/2)/a/(-a*d+b*c)/x^3/(b*x^6+a)-1/6*b*(-4*a*d+3*b*c)*arctan((-a*d+b*c)^(1/ 
2)*x^3/a^(1/2)/(d*x^6+c)^(1/2))/a^(5/2)/(-a*d+b*c)^(3/2)
 

Mathematica [A] (verified)

Time = 1.28 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.05 \[ \int \frac {1}{x^4 \left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx=\frac {\sqrt {c+d x^6} \left (2 a b c-2 a^2 d+3 b^2 c x^6-2 a b d x^6\right )}{6 a^2 c (-b c+a d) x^3 \left (a+b x^6\right )}-\frac {b (3 b c-4 a d) \arctan \left (\frac {a \sqrt {d}+b \sqrt {d} x^6+b x^3 \sqrt {c+d x^6}}{\sqrt {a} \sqrt {b c-a d}}\right )}{6 a^{5/2} (b c-a d)^{3/2}} \] Input:

Integrate[1/(x^4*(a + b*x^6)^2*Sqrt[c + d*x^6]),x]
 

Output:

(Sqrt[c + d*x^6]*(2*a*b*c - 2*a^2*d + 3*b^2*c*x^6 - 2*a*b*d*x^6))/(6*a^2*c 
*(-(b*c) + a*d)*x^3*(a + b*x^6)) - (b*(3*b*c - 4*a*d)*ArcTan[(a*Sqrt[d] + 
b*Sqrt[d]*x^6 + b*x^3*Sqrt[c + d*x^6])/(Sqrt[a]*Sqrt[b*c - a*d])])/(6*a^(5 
/2)*(b*c - a*d)^(3/2))
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {965, 374, 25, 445, 27, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^4 \left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx\)

\(\Big \downarrow \) 965

\(\displaystyle \frac {1}{3} \int \frac {1}{x^6 \left (b x^6+a\right )^2 \sqrt {d x^6+c}}dx^3\)

\(\Big \downarrow \) 374

\(\displaystyle \frac {1}{3} \left (\frac {b \sqrt {c+d x^6}}{2 a x^3 \left (a+b x^6\right ) (b c-a d)}-\frac {\int -\frac {2 b d x^6+3 b c-2 a d}{x^6 \left (b x^6+a\right ) \sqrt {d x^6+c}}dx^3}{2 a (b c-a d)}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{3} \left (\frac {\int \frac {2 b d x^6+3 b c-2 a d}{x^6 \left (b x^6+a\right ) \sqrt {d x^6+c}}dx^3}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^6}}{2 a x^3 \left (a+b x^6\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {1}{3} \left (\frac {-\frac {\int \frac {b c (3 b c-4 a d)}{\left (b x^6+a\right ) \sqrt {d x^6+c}}dx^3}{a c}-\frac {\sqrt {c+d x^6} (3 b c-2 a d)}{a c x^3}}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^6}}{2 a x^3 \left (a+b x^6\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (\frac {-\frac {b (3 b c-4 a d) \int \frac {1}{\left (b x^6+a\right ) \sqrt {d x^6+c}}dx^3}{a}-\frac {\sqrt {c+d x^6} (3 b c-2 a d)}{a c x^3}}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^6}}{2 a x^3 \left (a+b x^6\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {1}{3} \left (\frac {-\frac {b (3 b c-4 a d) \int \frac {1}{a-(a d-b c) x^6}d\frac {x^3}{\sqrt {d x^6+c}}}{a}-\frac {\sqrt {c+d x^6} (3 b c-2 a d)}{a c x^3}}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^6}}{2 a x^3 \left (a+b x^6\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{3} \left (\frac {-\frac {b (3 b c-4 a d) \arctan \left (\frac {x^3 \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^6}}\right )}{a^{3/2} \sqrt {b c-a d}}-\frac {\sqrt {c+d x^6} (3 b c-2 a d)}{a c x^3}}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^6}}{2 a x^3 \left (a+b x^6\right ) (b c-a d)}\right )\)

Input:

Int[1/(x^4*(a + b*x^6)^2*Sqrt[c + d*x^6]),x]
 

Output:

((b*Sqrt[c + d*x^6])/(2*a*(b*c - a*d)*x^3*(a + b*x^6)) + (-(((3*b*c - 2*a* 
d)*Sqrt[c + d*x^6])/(a*c*x^3)) - (b*(3*b*c - 4*a*d)*ArcTan[(Sqrt[b*c - a*d 
]*x^3)/(Sqrt[a]*Sqrt[c + d*x^6])])/(a^(3/2)*Sqrt[b*c - a*d]))/(2*a*(b*c - 
a*d)))/3
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 374
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
 + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - 
a*d)*(p + 1) + d*b*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, 
c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, 
 c, d, e, m, 2, p, q, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 965
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), 
 x_Symbol] :> With[{k = GCD[m + 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 
 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /; Free 
Q[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]
 
Maple [A] (verified)

Time = 7.80 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.75

method result size
pseudoelliptic \(\frac {-\frac {\sqrt {d \,x^{6}+c}}{x^{3}}+\frac {b c \left (\frac {\sqrt {d \,x^{6}+c}\, b \,x^{3}}{b \,x^{6}+a}-\frac {\left (4 a d -3 c b \right ) \operatorname {arctanh}\left (\frac {a \sqrt {d \,x^{6}+c}}{x^{3} \sqrt {a \left (a d -c b \right )}}\right )}{\sqrt {a \left (a d -c b \right )}}\right )}{2 a d -2 c b}}{3 a^{2} c}\) \(112\)

Input:

int(1/x^4/(b*x^6+a)^2/(d*x^6+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/3/a^2*(-(d*x^6+c)^(1/2)/x^3+1/2*b*c/(a*d-b*c)*((d*x^6+c)^(1/2)*b*x^3/(b* 
x^6+a)-(4*a*d-3*b*c)/(a*(a*d-b*c))^(1/2)*arctanh(a*(d*x^6+c)^(1/2)/x^3/(a* 
(a*d-b*c))^(1/2))))/c
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 286 vs. \(2 (129) = 258\).

Time = 0.20 (sec) , antiderivative size = 612, normalized size of antiderivative = 4.11 \[ \int \frac {1}{x^4 \left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx=\left [-\frac {{\left ({\left (3 \, b^{3} c^{2} - 4 \, a b^{2} c d\right )} x^{9} + {\left (3 \, a b^{2} c^{2} - 4 \, a^{2} b c d\right )} x^{3}\right )} \sqrt {-a b c + a^{2} d} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{12} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{6} + a^{2} c^{2} + 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{9} - a c x^{3}\right )} \sqrt {d x^{6} + c} \sqrt {-a b c + a^{2} d}}{b^{2} x^{12} + 2 \, a b x^{6} + a^{2}}\right ) + 4 \, {\left ({\left (3 \, a b^{3} c^{2} - 5 \, a^{2} b^{2} c d + 2 \, a^{3} b d^{2}\right )} x^{6} + 2 \, a^{2} b^{2} c^{2} - 4 \, a^{3} b c d + 2 \, a^{4} d^{2}\right )} \sqrt {d x^{6} + c}}{24 \, {\left ({\left (a^{3} b^{3} c^{3} - 2 \, a^{4} b^{2} c^{2} d + a^{5} b c d^{2}\right )} x^{9} + {\left (a^{4} b^{2} c^{3} - 2 \, a^{5} b c^{2} d + a^{6} c d^{2}\right )} x^{3}\right )}}, -\frac {{\left ({\left (3 \, b^{3} c^{2} - 4 \, a b^{2} c d\right )} x^{9} + {\left (3 \, a b^{2} c^{2} - 4 \, a^{2} b c d\right )} x^{3}\right )} \sqrt {a b c - a^{2} d} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{6} - a c\right )} \sqrt {d x^{6} + c} \sqrt {a b c - a^{2} d}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{9} + {\left (a b c^{2} - a^{2} c d\right )} x^{3}\right )}}\right ) + 2 \, {\left ({\left (3 \, a b^{3} c^{2} - 5 \, a^{2} b^{2} c d + 2 \, a^{3} b d^{2}\right )} x^{6} + 2 \, a^{2} b^{2} c^{2} - 4 \, a^{3} b c d + 2 \, a^{4} d^{2}\right )} \sqrt {d x^{6} + c}}{12 \, {\left ({\left (a^{3} b^{3} c^{3} - 2 \, a^{4} b^{2} c^{2} d + a^{5} b c d^{2}\right )} x^{9} + {\left (a^{4} b^{2} c^{3} - 2 \, a^{5} b c^{2} d + a^{6} c d^{2}\right )} x^{3}\right )}}\right ] \] Input:

integrate(1/x^4/(b*x^6+a)^2/(d*x^6+c)^(1/2),x, algorithm="fricas")
 

Output:

[-1/24*(((3*b^3*c^2 - 4*a*b^2*c*d)*x^9 + (3*a*b^2*c^2 - 4*a^2*b*c*d)*x^3)* 
sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^12 - 2*(3*a* 
b*c^2 - 4*a^2*c*d)*x^6 + a^2*c^2 + 4*((b*c - 2*a*d)*x^9 - a*c*x^3)*sqrt(d* 
x^6 + c)*sqrt(-a*b*c + a^2*d))/(b^2*x^12 + 2*a*b*x^6 + a^2)) + 4*((3*a*b^3 
*c^2 - 5*a^2*b^2*c*d + 2*a^3*b*d^2)*x^6 + 2*a^2*b^2*c^2 - 4*a^3*b*c*d + 2* 
a^4*d^2)*sqrt(d*x^6 + c))/((a^3*b^3*c^3 - 2*a^4*b^2*c^2*d + a^5*b*c*d^2)*x 
^9 + (a^4*b^2*c^3 - 2*a^5*b*c^2*d + a^6*c*d^2)*x^3), -1/12*(((3*b^3*c^2 - 
4*a*b^2*c*d)*x^9 + (3*a*b^2*c^2 - 4*a^2*b*c*d)*x^3)*sqrt(a*b*c - a^2*d)*ar 
ctan(1/2*((b*c - 2*a*d)*x^6 - a*c)*sqrt(d*x^6 + c)*sqrt(a*b*c - a^2*d)/((a 
*b*c*d - a^2*d^2)*x^9 + (a*b*c^2 - a^2*c*d)*x^3)) + 2*((3*a*b^3*c^2 - 5*a^ 
2*b^2*c*d + 2*a^3*b*d^2)*x^6 + 2*a^2*b^2*c^2 - 4*a^3*b*c*d + 2*a^4*d^2)*sq 
rt(d*x^6 + c))/((a^3*b^3*c^3 - 2*a^4*b^2*c^2*d + a^5*b*c*d^2)*x^9 + (a^4*b 
^2*c^3 - 2*a^5*b*c^2*d + a^6*c*d^2)*x^3)]
 

Sympy [F]

\[ \int \frac {1}{x^4 \left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx=\int \frac {1}{x^{4} \left (a + b x^{6}\right )^{2} \sqrt {c + d x^{6}}}\, dx \] Input:

integrate(1/x**4/(b*x**6+a)**2/(d*x**6+c)**(1/2),x)
 

Output:

Integral(1/(x**4*(a + b*x**6)**2*sqrt(c + d*x**6)), x)
 

Maxima [F]

\[ \int \frac {1}{x^4 \left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx=\int { \frac {1}{{\left (b x^{6} + a\right )}^{2} \sqrt {d x^{6} + c} x^{4}} \,d x } \] Input:

integrate(1/x^4/(b*x^6+a)^2/(d*x^6+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*x^6 + a)^2*sqrt(d*x^6 + c)*x^4), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {1}{x^4 \left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx=\text {Timed out} \] Input:

integrate(1/x^4/(b*x^6+a)^2/(d*x^6+c)^(1/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^4 \left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx=\int \frac {1}{x^4\,{\left (b\,x^6+a\right )}^2\,\sqrt {d\,x^6+c}} \,d x \] Input:

int(1/(x^4*(a + b*x^6)^2*(c + d*x^6)^(1/2)),x)
 

Output:

int(1/(x^4*(a + b*x^6)^2*(c + d*x^6)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{x^4 \left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx=\frac {-2 \sqrt {d \,x^{6}+c}\, a d +\sqrt {d \,x^{6}+c}\, b c -2 \sqrt {d \,x^{6}+c}\, b d \,x^{6}-24 \left (\int \frac {\sqrt {d \,x^{6}+c}\, x^{2}}{2 a \,b^{2} d^{2} x^{18}-b^{3} c d \,x^{18}+4 a^{2} b \,d^{2} x^{12}-b^{3} c^{2} x^{12}+2 a^{3} d^{2} x^{6}+3 a^{2} b c d \,x^{6}-2 a \,b^{2} c^{2} x^{6}+2 a^{3} c d -a^{2} b \,c^{2}}d x \right ) a^{3} b c \,d^{2} x^{3}+30 \left (\int \frac {\sqrt {d \,x^{6}+c}\, x^{2}}{2 a \,b^{2} d^{2} x^{18}-b^{3} c d \,x^{18}+4 a^{2} b \,d^{2} x^{12}-b^{3} c^{2} x^{12}+2 a^{3} d^{2} x^{6}+3 a^{2} b c d \,x^{6}-2 a \,b^{2} c^{2} x^{6}+2 a^{3} c d -a^{2} b \,c^{2}}d x \right ) a^{2} b^{2} c^{2} d \,x^{3}-24 \left (\int \frac {\sqrt {d \,x^{6}+c}\, x^{2}}{2 a \,b^{2} d^{2} x^{18}-b^{3} c d \,x^{18}+4 a^{2} b \,d^{2} x^{12}-b^{3} c^{2} x^{12}+2 a^{3} d^{2} x^{6}+3 a^{2} b c d \,x^{6}-2 a \,b^{2} c^{2} x^{6}+2 a^{3} c d -a^{2} b \,c^{2}}d x \right ) a^{2} b^{2} c \,d^{2} x^{9}-9 \left (\int \frac {\sqrt {d \,x^{6}+c}\, x^{2}}{2 a \,b^{2} d^{2} x^{18}-b^{3} c d \,x^{18}+4 a^{2} b \,d^{2} x^{12}-b^{3} c^{2} x^{12}+2 a^{3} d^{2} x^{6}+3 a^{2} b c d \,x^{6}-2 a \,b^{2} c^{2} x^{6}+2 a^{3} c d -a^{2} b \,c^{2}}d x \right ) a \,b^{3} c^{3} x^{3}+30 \left (\int \frac {\sqrt {d \,x^{6}+c}\, x^{2}}{2 a \,b^{2} d^{2} x^{18}-b^{3} c d \,x^{18}+4 a^{2} b \,d^{2} x^{12}-b^{3} c^{2} x^{12}+2 a^{3} d^{2} x^{6}+3 a^{2} b c d \,x^{6}-2 a \,b^{2} c^{2} x^{6}+2 a^{3} c d -a^{2} b \,c^{2}}d x \right ) a \,b^{3} c^{2} d \,x^{9}-9 \left (\int \frac {\sqrt {d \,x^{6}+c}\, x^{2}}{2 a \,b^{2} d^{2} x^{18}-b^{3} c d \,x^{18}+4 a^{2} b \,d^{2} x^{12}-b^{3} c^{2} x^{12}+2 a^{3} d^{2} x^{6}+3 a^{2} b c d \,x^{6}-2 a \,b^{2} c^{2} x^{6}+2 a^{3} c d -a^{2} b \,c^{2}}d x \right ) b^{4} c^{3} x^{9}}{3 a c \,x^{3} \left (2 a b d \,x^{6}-b^{2} c \,x^{6}+2 a^{2} d -a b c \right )} \] Input:

int(1/x^4/(b*x^6+a)^2/(d*x^6+c)^(1/2),x)
 

Output:

( - 2*sqrt(c + d*x**6)*a*d + sqrt(c + d*x**6)*b*c - 2*sqrt(c + d*x**6)*b*d 
*x**6 - 24*int((sqrt(c + d*x**6)*x**2)/(2*a**3*c*d + 2*a**3*d**2*x**6 - a* 
*2*b*c**2 + 3*a**2*b*c*d*x**6 + 4*a**2*b*d**2*x**12 - 2*a*b**2*c**2*x**6 + 
 2*a*b**2*d**2*x**18 - b**3*c**2*x**12 - b**3*c*d*x**18),x)*a**3*b*c*d**2* 
x**3 + 30*int((sqrt(c + d*x**6)*x**2)/(2*a**3*c*d + 2*a**3*d**2*x**6 - a** 
2*b*c**2 + 3*a**2*b*c*d*x**6 + 4*a**2*b*d**2*x**12 - 2*a*b**2*c**2*x**6 + 
2*a*b**2*d**2*x**18 - b**3*c**2*x**12 - b**3*c*d*x**18),x)*a**2*b**2*c**2* 
d*x**3 - 24*int((sqrt(c + d*x**6)*x**2)/(2*a**3*c*d + 2*a**3*d**2*x**6 - a 
**2*b*c**2 + 3*a**2*b*c*d*x**6 + 4*a**2*b*d**2*x**12 - 2*a*b**2*c**2*x**6 
+ 2*a*b**2*d**2*x**18 - b**3*c**2*x**12 - b**3*c*d*x**18),x)*a**2*b**2*c*d 
**2*x**9 - 9*int((sqrt(c + d*x**6)*x**2)/(2*a**3*c*d + 2*a**3*d**2*x**6 - 
a**2*b*c**2 + 3*a**2*b*c*d*x**6 + 4*a**2*b*d**2*x**12 - 2*a*b**2*c**2*x**6 
 + 2*a*b**2*d**2*x**18 - b**3*c**2*x**12 - b**3*c*d*x**18),x)*a*b**3*c**3* 
x**3 + 30*int((sqrt(c + d*x**6)*x**2)/(2*a**3*c*d + 2*a**3*d**2*x**6 - a** 
2*b*c**2 + 3*a**2*b*c*d*x**6 + 4*a**2*b*d**2*x**12 - 2*a*b**2*c**2*x**6 + 
2*a*b**2*d**2*x**18 - b**3*c**2*x**12 - b**3*c*d*x**18),x)*a*b**3*c**2*d*x 
**9 - 9*int((sqrt(c + d*x**6)*x**2)/(2*a**3*c*d + 2*a**3*d**2*x**6 - a**2* 
b*c**2 + 3*a**2*b*c*d*x**6 + 4*a**2*b*d**2*x**12 - 2*a*b**2*c**2*x**6 + 2* 
a*b**2*d**2*x**18 - b**3*c**2*x**12 - b**3*c*d*x**18),x)*b**4*c**3*x**9)/( 
3*a*c*x**3*(2*a**2*d - a*b*c + 2*a*b*d*x**6 - b**2*c*x**6))