\(\int x^2 (a+b x^n)^{3/2} (A+B x^n) \, dx\) [337]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F(-2)]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 102 \[ \int x^2 \left (a+b x^n\right )^{3/2} \left (A+B x^n\right ) \, dx=\frac {2 B x^3 \left (a+b x^n\right )^{5/2}}{b (6+5 n)}+\frac {a \left (A-\frac {6 a B}{6 b+5 b n}\right ) x^3 \sqrt {a+b x^n} \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {3}{n},\frac {3+n}{n},-\frac {b x^n}{a}\right )}{3 \sqrt {1+\frac {b x^n}{a}}} \] Output:

2*B*x^3*(a+b*x^n)^(5/2)/b/(6+5*n)+1/3*a*(A-6*a*B/(5*b*n+6*b))*x^3*(a+b*x^n 
)^(1/2)*hypergeom([-3/2, 3/n],[(3+n)/n],-b*x^n/a)/(1+b*x^n/a)^(1/2)
 

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00 \[ \int x^2 \left (a+b x^n\right )^{3/2} \left (A+B x^n\right ) \, dx=\frac {a x^3 \sqrt {a+b x^n} \left (A (3+n) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {3}{n},\frac {3+n}{n},-\frac {b x^n}{a}\right )+3 B x^n \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {3+n}{n},2+\frac {3}{n},-\frac {b x^n}{a}\right )\right )}{3 (3+n) \sqrt {1+\frac {b x^n}{a}}} \] Input:

Integrate[x^2*(a + b*x^n)^(3/2)*(A + B*x^n),x]
 

Output:

(a*x^3*Sqrt[a + b*x^n]*(A*(3 + n)*Hypergeometric2F1[-3/2, 3/n, (3 + n)/n, 
-((b*x^n)/a)] + 3*B*x^n*Hypergeometric2F1[-3/2, (3 + n)/n, 2 + 3/n, -((b*x 
^n)/a)]))/(3*(3 + n)*Sqrt[1 + (b*x^n)/a])
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {959, 889, 888}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \left (a+b x^n\right )^{3/2} \left (A+B x^n\right ) \, dx\)

\(\Big \downarrow \) 959

\(\displaystyle \left (A-\frac {6 a B}{5 b n+6 b}\right ) \int x^2 \left (b x^n+a\right )^{3/2}dx+\frac {2 B x^3 \left (a+b x^n\right )^{5/2}}{b (5 n+6)}\)

\(\Big \downarrow \) 889

\(\displaystyle \frac {a \sqrt {a+b x^n} \left (A-\frac {6 a B}{5 b n+6 b}\right ) \int x^2 \left (\frac {b x^n}{a}+1\right )^{3/2}dx}{\sqrt {\frac {b x^n}{a}+1}}+\frac {2 B x^3 \left (a+b x^n\right )^{5/2}}{b (5 n+6)}\)

\(\Big \downarrow \) 888

\(\displaystyle \frac {a x^3 \sqrt {a+b x^n} \left (A-\frac {6 a B}{5 b n+6 b}\right ) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {3}{n},\frac {n+3}{n},-\frac {b x^n}{a}\right )}{3 \sqrt {\frac {b x^n}{a}+1}}+\frac {2 B x^3 \left (a+b x^n\right )^{5/2}}{b (5 n+6)}\)

Input:

Int[x^2*(a + b*x^n)^(3/2)*(A + B*x^n),x]
 

Output:

(2*B*x^3*(a + b*x^n)^(5/2))/(b*(6 + 5*n)) + (a*(A - (6*a*B)/(6*b + 5*b*n)) 
*x^3*Sqrt[a + b*x^n]*Hypergeometric2F1[-3/2, 3/n, (3 + n)/n, -((b*x^n)/a)] 
)/(3*Sqrt[1 + (b*x^n)/a])
 

Defintions of rubi rules used

rule 888
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p 
*((c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/n, (m + 1)/n + 1 
, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] && (ILt 
Q[p, 0] || GtQ[a, 0])
 

rule 889
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^I 
ntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p])   Int[(c*x) 
^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0 
] &&  !(ILtQ[p, 0] || GtQ[a, 0])
 

rule 959
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p 
+ 1) + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m + n*(p 
 + 1) + 1))   Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, 
 n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[m + n*(p + 1) + 1, 0]
 
Maple [F]

\[\int x^{2} \left (a +b \,x^{n}\right )^{\frac {3}{2}} \left (A +B \,x^{n}\right )d x\]

Input:

int(x^2*(a+b*x^n)^(3/2)*(A+B*x^n),x)
 

Output:

int(x^2*(a+b*x^n)^(3/2)*(A+B*x^n),x)
 

Fricas [F(-2)]

Exception generated. \[ \int x^2 \left (a+b x^n\right )^{3/2} \left (A+B x^n\right ) \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^2*(a+b*x^n)^(3/2)*(A+B*x^n),x, algorithm="fricas")
 

Output:

Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (has polynomial part)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 7.51 (sec) , antiderivative size = 250, normalized size of antiderivative = 2.45 \[ \int x^2 \left (a+b x^n\right )^{3/2} \left (A+B x^n\right ) \, dx=\frac {A a a^{\frac {3}{n}} a^{\frac {1}{2} - \frac {3}{n}} x^{3} \Gamma \left (\frac {3}{n}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{n} \\ 1 + \frac {3}{n} \end {matrix}\middle | {\frac {b x^{n} e^{i \pi }}{a}} \right )}}{n \Gamma \left (1 + \frac {3}{n}\right )} + \frac {A a^{- \frac {1}{2} - \frac {3}{n}} a^{1 + \frac {3}{n}} b x^{n + 3} \Gamma \left (1 + \frac {3}{n}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, 1 + \frac {3}{n} \\ 2 + \frac {3}{n} \end {matrix}\middle | {\frac {b x^{n} e^{i \pi }}{a}} \right )}}{n \Gamma \left (2 + \frac {3}{n}\right )} + \frac {B a a^{- \frac {1}{2} - \frac {3}{n}} a^{1 + \frac {3}{n}} x^{n + 3} \Gamma \left (1 + \frac {3}{n}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, 1 + \frac {3}{n} \\ 2 + \frac {3}{n} \end {matrix}\middle | {\frac {b x^{n} e^{i \pi }}{a}} \right )}}{n \Gamma \left (2 + \frac {3}{n}\right )} + \frac {B a^{- \frac {3}{2} - \frac {3}{n}} a^{2 + \frac {3}{n}} b x^{2 n + 3} \Gamma \left (2 + \frac {3}{n}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, 2 + \frac {3}{n} \\ 3 + \frac {3}{n} \end {matrix}\middle | {\frac {b x^{n} e^{i \pi }}{a}} \right )}}{n \Gamma \left (3 + \frac {3}{n}\right )} \] Input:

integrate(x**2*(a+b*x**n)**(3/2)*(A+B*x**n),x)
 

Output:

A*a*a**(3/n)*a**(1/2 - 3/n)*x**3*gamma(3/n)*hyper((-1/2, 3/n), (1 + 3/n,), 
 b*x**n*exp_polar(I*pi)/a)/(n*gamma(1 + 3/n)) + A*a**(-1/2 - 3/n)*a**(1 + 
3/n)*b*x**(n + 3)*gamma(1 + 3/n)*hyper((-1/2, 1 + 3/n), (2 + 3/n,), b*x**n 
*exp_polar(I*pi)/a)/(n*gamma(2 + 3/n)) + B*a*a**(-1/2 - 3/n)*a**(1 + 3/n)* 
x**(n + 3)*gamma(1 + 3/n)*hyper((-1/2, 1 + 3/n), (2 + 3/n,), b*x**n*exp_po 
lar(I*pi)/a)/(n*gamma(2 + 3/n)) + B*a**(-3/2 - 3/n)*a**(2 + 3/n)*b*x**(2*n 
 + 3)*gamma(2 + 3/n)*hyper((-1/2, 2 + 3/n), (3 + 3/n,), b*x**n*exp_polar(I 
*pi)/a)/(n*gamma(3 + 3/n))
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int x^2 \left (a+b x^n\right )^{3/2} \left (A+B x^n\right ) \, dx=\int { {\left (B x^{n} + A\right )} {\left (b x^{n} + a\right )}^{\frac {3}{2}} x^{2} \,d x } \] Input:

integrate(x^2*(a+b*x^n)^(3/2)*(A+B*x^n),x, algorithm="maxima")
 

Output:

integrate((B*x^n + A)*(b*x^n + a)^(3/2)*x^2, x)
 

Giac [F]

\[ \int x^2 \left (a+b x^n\right )^{3/2} \left (A+B x^n\right ) \, dx=\int { {\left (B x^{n} + A\right )} {\left (b x^{n} + a\right )}^{\frac {3}{2}} x^{2} \,d x } \] Input:

integrate(x^2*(a+b*x^n)^(3/2)*(A+B*x^n),x, algorithm="giac")
 

Output:

integrate((B*x^n + A)*(b*x^n + a)^(3/2)*x^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int x^2 \left (a+b x^n\right )^{3/2} \left (A+B x^n\right ) \, dx=\int x^2\,\left (A+B\,x^n\right )\,{\left (a+b\,x^n\right )}^{3/2} \,d x \] Input:

int(x^2*(A + B*x^n)*(a + b*x^n)^(3/2),x)
 

Output:

int(x^2*(A + B*x^n)*(a + b*x^n)^(3/2), x)
 

Reduce [F]

\[ \int x^2 \left (a+b x^n\right )^{3/2} \left (A+B x^n\right ) \, dx=\frac {6 x^{2 n} \sqrt {x^{n} b +a}\, b^{2} n^{2} x^{3}+48 x^{2 n} \sqrt {x^{n} b +a}\, b^{2} n \,x^{3}+72 x^{2 n} \sqrt {x^{n} b +a}\, b^{2} x^{3}+22 x^{n} \sqrt {x^{n} b +a}\, a b \,n^{2} x^{3}+156 x^{n} \sqrt {x^{n} b +a}\, a b n \,x^{3}+144 x^{n} \sqrt {x^{n} b +a}\, a b \,x^{3}+46 \sqrt {x^{n} b +a}\, a^{2} n^{2} x^{3}+108 \sqrt {x^{n} b +a}\, a^{2} n \,x^{3}+72 \sqrt {x^{n} b +a}\, a^{2} x^{3}+75 \left (\int \frac {\sqrt {x^{n} b +a}\, x^{2}}{5 x^{n} b \,n^{3}+46 x^{n} b \,n^{2}+108 x^{n} b n +72 x^{n} b +5 a \,n^{3}+46 a \,n^{2}+108 a n +72 a}d x \right ) a^{3} n^{6}+690 \left (\int \frac {\sqrt {x^{n} b +a}\, x^{2}}{5 x^{n} b \,n^{3}+46 x^{n} b \,n^{2}+108 x^{n} b n +72 x^{n} b +5 a \,n^{3}+46 a \,n^{2}+108 a n +72 a}d x \right ) a^{3} n^{5}+1620 \left (\int \frac {\sqrt {x^{n} b +a}\, x^{2}}{5 x^{n} b \,n^{3}+46 x^{n} b \,n^{2}+108 x^{n} b n +72 x^{n} b +5 a \,n^{3}+46 a \,n^{2}+108 a n +72 a}d x \right ) a^{3} n^{4}+1080 \left (\int \frac {\sqrt {x^{n} b +a}\, x^{2}}{5 x^{n} b \,n^{3}+46 x^{n} b \,n^{2}+108 x^{n} b n +72 x^{n} b +5 a \,n^{3}+46 a \,n^{2}+108 a n +72 a}d x \right ) a^{3} n^{3}}{15 n^{3}+138 n^{2}+324 n +216} \] Input:

int(x^2*(a+b*x^n)^(3/2)*(A+B*x^n),x)
 

Output:

(6*x**(2*n)*sqrt(x**n*b + a)*b**2*n**2*x**3 + 48*x**(2*n)*sqrt(x**n*b + a) 
*b**2*n*x**3 + 72*x**(2*n)*sqrt(x**n*b + a)*b**2*x**3 + 22*x**n*sqrt(x**n* 
b + a)*a*b*n**2*x**3 + 156*x**n*sqrt(x**n*b + a)*a*b*n*x**3 + 144*x**n*sqr 
t(x**n*b + a)*a*b*x**3 + 46*sqrt(x**n*b + a)*a**2*n**2*x**3 + 108*sqrt(x** 
n*b + a)*a**2*n*x**3 + 72*sqrt(x**n*b + a)*a**2*x**3 + 75*int((sqrt(x**n*b 
 + a)*x**2)/(5*x**n*b*n**3 + 46*x**n*b*n**2 + 108*x**n*b*n + 72*x**n*b + 5 
*a*n**3 + 46*a*n**2 + 108*a*n + 72*a),x)*a**3*n**6 + 690*int((sqrt(x**n*b 
+ a)*x**2)/(5*x**n*b*n**3 + 46*x**n*b*n**2 + 108*x**n*b*n + 72*x**n*b + 5* 
a*n**3 + 46*a*n**2 + 108*a*n + 72*a),x)*a**3*n**5 + 1620*int((sqrt(x**n*b 
+ a)*x**2)/(5*x**n*b*n**3 + 46*x**n*b*n**2 + 108*x**n*b*n + 72*x**n*b + 5* 
a*n**3 + 46*a*n**2 + 108*a*n + 72*a),x)*a**3*n**4 + 1080*int((sqrt(x**n*b 
+ a)*x**2)/(5*x**n*b*n**3 + 46*x**n*b*n**2 + 108*x**n*b*n + 72*x**n*b + 5* 
a*n**3 + 46*a*n**2 + 108*a*n + 72*a),x)*a**3*n**3)/(3*(5*n**3 + 46*n**2 + 
108*n + 72))