\(\int x^2 (a+b x^n)^p (3 a+b (5+2 p) x^n) \, dx\) [426]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 99 \[ \int x^2 \left (a+b x^n\right )^p \left (3 a+b (5+2 p) x^n\right ) \, dx=\frac {(5+2 p) x^3 \left (a+b x^n\right )^{1+p}}{3+n+n p}-\frac {a (2-n) (1+p) x^3 \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {3}{n},-p,\frac {3+n}{n},-\frac {b x^n}{a}\right )}{3+n+n p} \] Output:

(5+2*p)*x^3*(a+b*x^n)^(p+1)/(n*p+n+3)-a*(2-n)*(p+1)*x^3*(a+b*x^n)^p*hyperg 
eom([-p, 3/n],[(3+n)/n],-b*x^n/a)/(n*p+n+3)/((1+b*x^n/a)^p)
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.01 \[ \int x^2 \left (a+b x^n\right )^p \left (3 a+b (5+2 p) x^n\right ) \, dx=\frac {x^3 \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} \left (a (3+n) \operatorname {Hypergeometric2F1}\left (\frac {3}{n},-p,\frac {3+n}{n},-\frac {b x^n}{a}\right )+b (5+2 p) x^n \operatorname {Hypergeometric2F1}\left (\frac {3+n}{n},-p,2+\frac {3}{n},-\frac {b x^n}{a}\right )\right )}{3+n} \] Input:

Integrate[x^2*(a + b*x^n)^p*(3*a + b*(5 + 2*p)*x^n),x]
 

Output:

(x^3*(a + b*x^n)^p*(a*(3 + n)*Hypergeometric2F1[3/n, -p, (3 + n)/n, -((b*x 
^n)/a)] + b*(5 + 2*p)*x^n*Hypergeometric2F1[(3 + n)/n, -p, 2 + 3/n, -((b*x 
^n)/a)]))/((3 + n)*(1 + (b*x^n)/a)^p)
 

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {959, 889, 888}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \left (a+b x^n\right )^p \left (3 a+b (2 p+5) x^n\right ) \, dx\)

\(\Big \downarrow \) 959

\(\displaystyle \frac {(2 p+5) x^3 \left (a+b x^n\right )^{p+1}}{n p+n+3}-\frac {3 a (2-n) (p+1) \int x^2 \left (b x^n+a\right )^pdx}{n p+n+3}\)

\(\Big \downarrow \) 889

\(\displaystyle \frac {(2 p+5) x^3 \left (a+b x^n\right )^{p+1}}{n p+n+3}-\frac {3 a (2-n) (p+1) \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} \int x^2 \left (\frac {b x^n}{a}+1\right )^pdx}{n p+n+3}\)

\(\Big \downarrow \) 888

\(\displaystyle \frac {(2 p+5) x^3 \left (a+b x^n\right )^{p+1}}{n p+n+3}-\frac {a (2-n) (p+1) x^3 \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {3}{n},-p,\frac {n+3}{n},-\frac {b x^n}{a}\right )}{n p+n+3}\)

Input:

Int[x^2*(a + b*x^n)^p*(3*a + b*(5 + 2*p)*x^n),x]
 

Output:

((5 + 2*p)*x^3*(a + b*x^n)^(1 + p))/(3 + n + n*p) - (a*(2 - n)*(1 + p)*x^3 
*(a + b*x^n)^p*Hypergeometric2F1[3/n, -p, (3 + n)/n, -((b*x^n)/a)])/((3 + 
n + n*p)*(1 + (b*x^n)/a)^p)
 

Defintions of rubi rules used

rule 888
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p 
*((c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/n, (m + 1)/n + 1 
, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] && (ILt 
Q[p, 0] || GtQ[a, 0])
 

rule 889
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^I 
ntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p])   Int[(c*x) 
^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0 
] &&  !(ILtQ[p, 0] || GtQ[a, 0])
 

rule 959
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p 
+ 1) + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m + n*(p 
 + 1) + 1))   Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, 
 n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[m + n*(p + 1) + 1, 0]
 
Maple [F]

\[\int x^{2} \left (a +b \,x^{n}\right )^{p} \left (3 a +b \left (5+2 p \right ) x^{n}\right )d x\]

Input:

int(x^2*(a+b*x^n)^p*(3*a+b*(5+2*p)*x^n),x)
 

Output:

int(x^2*(a+b*x^n)^p*(3*a+b*(5+2*p)*x^n),x)
 

Fricas [F]

\[ \int x^2 \left (a+b x^n\right )^p \left (3 a+b (5+2 p) x^n\right ) \, dx=\int { {\left (b {\left (2 \, p + 5\right )} x^{n} + 3 \, a\right )} {\left (b x^{n} + a\right )}^{p} x^{2} \,d x } \] Input:

integrate(x^2*(a+b*x^n)^p*(3*a+b*(5+2*p)*x^n),x, algorithm="fricas")
 

Output:

integral(((2*b*p + 5*b)*x^2*x^n + 3*a*x^2)*(b*x^n + a)^p, x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 9.87 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.77 \[ \int x^2 \left (a+b x^n\right )^p \left (3 a+b (5+2 p) x^n\right ) \, dx=\frac {3 a a^{\frac {3}{n}} a^{p - \frac {3}{n}} x^{3} \Gamma \left (\frac {3}{n}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{n}, - p \\ 1 + \frac {3}{n} \end {matrix}\middle | {\frac {b x^{n} e^{i \pi }}{a}} \right )}}{n \Gamma \left (1 + \frac {3}{n}\right )} + \frac {2 a^{1 + \frac {3}{n}} a^{p - 1 - \frac {3}{n}} b p x^{n + 3} \Gamma \left (1 + \frac {3}{n}\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, 1 + \frac {3}{n} \\ 2 + \frac {3}{n} \end {matrix}\middle | {\frac {b x^{n} e^{i \pi }}{a}} \right )}}{n \Gamma \left (2 + \frac {3}{n}\right )} + \frac {5 a^{1 + \frac {3}{n}} a^{p - 1 - \frac {3}{n}} b x^{n + 3} \Gamma \left (1 + \frac {3}{n}\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, 1 + \frac {3}{n} \\ 2 + \frac {3}{n} \end {matrix}\middle | {\frac {b x^{n} e^{i \pi }}{a}} \right )}}{n \Gamma \left (2 + \frac {3}{n}\right )} \] Input:

integrate(x**2*(a+b*x**n)**p*(3*a+b*(5+2*p)*x**n),x)
 

Output:

3*a*a**(3/n)*a**(p - 3/n)*x**3*gamma(3/n)*hyper((3/n, -p), (1 + 3/n,), b*x 
**n*exp_polar(I*pi)/a)/(n*gamma(1 + 3/n)) + 2*a**(1 + 3/n)*a**(p - 1 - 3/n 
)*b*p*x**(n + 3)*gamma(1 + 3/n)*hyper((-p, 1 + 3/n), (2 + 3/n,), b*x**n*ex 
p_polar(I*pi)/a)/(n*gamma(2 + 3/n)) + 5*a**(1 + 3/n)*a**(p - 1 - 3/n)*b*x* 
*(n + 3)*gamma(1 + 3/n)*hyper((-p, 1 + 3/n), (2 + 3/n,), b*x**n*exp_polar( 
I*pi)/a)/(n*gamma(2 + 3/n))
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int x^2 \left (a+b x^n\right )^p \left (3 a+b (5+2 p) x^n\right ) \, dx=\int { {\left (b {\left (2 \, p + 5\right )} x^{n} + 3 \, a\right )} {\left (b x^{n} + a\right )}^{p} x^{2} \,d x } \] Input:

integrate(x^2*(a+b*x^n)^p*(3*a+b*(5+2*p)*x^n),x, algorithm="maxima")
 

Output:

integrate((b*(2*p + 5)*x^n + 3*a)*(b*x^n + a)^p*x^2, x)
 

Giac [F]

\[ \int x^2 \left (a+b x^n\right )^p \left (3 a+b (5+2 p) x^n\right ) \, dx=\int { {\left (b {\left (2 \, p + 5\right )} x^{n} + 3 \, a\right )} {\left (b x^{n} + a\right )}^{p} x^{2} \,d x } \] Input:

integrate(x^2*(a+b*x^n)^p*(3*a+b*(5+2*p)*x^n),x, algorithm="giac")
 

Output:

integrate((b*(2*p + 5)*x^n + 3*a)*(b*x^n + a)^p*x^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int x^2 \left (a+b x^n\right )^p \left (3 a+b (5+2 p) x^n\right ) \, dx=\int x^2\,\left (3\,a+b\,x^n\,\left (2\,p+5\right )\right )\,{\left (a+b\,x^n\right )}^p \,d x \] Input:

int(x^2*(3*a + b*x^n*(2*p + 5))*(a + b*x^n)^p,x)
 

Output:

int(x^2*(3*a + b*x^n*(2*p + 5))*(a + b*x^n)^p, x)
 

Reduce [F]

\[ \int x^2 \left (a+b x^n\right )^p \left (3 a+b (5+2 p) x^n\right ) \, dx =\text {Too large to display} \] Input:

int(x^2*(a+b*x^n)^p*(3*a+b*(5+2*p)*x^n),x)
 

Output:

(2*x**n*(x**n*b + a)**p*b*n*p**2*x**3 + 5*x**n*(x**n*b + a)**p*b*n*p*x**3 
+ 6*x**n*(x**n*b + a)**p*b*p*x**3 + 15*x**n*(x**n*b + a)**p*b*x**3 + 2*(x* 
*n*b + a)**p*a*n*p**2*x**3 + 8*(x**n*b + a)**p*a*n*p*x**3 + 3*(x**n*b + a) 
**p*a*n*x**3 + 9*(x**n*b + a)**p*a*x**3 + 3*int(((x**n*b + a)**p*x**2)/(x* 
*n*b*n**2*p**2 + x**n*b*n**2*p + 6*x**n*b*n*p + 3*x**n*b*n + 9*x**n*b + a* 
n**2*p**2 + a*n**2*p + 6*a*n*p + 3*a*n + 9*a),x)*a**2*n**4*p**4 + 6*int((( 
x**n*b + a)**p*x**2)/(x**n*b*n**2*p**2 + x**n*b*n**2*p + 6*x**n*b*n*p + 3* 
x**n*b*n + 9*x**n*b + a*n**2*p**2 + a*n**2*p + 6*a*n*p + 3*a*n + 9*a),x)*a 
**2*n**4*p**3 + 3*int(((x**n*b + a)**p*x**2)/(x**n*b*n**2*p**2 + x**n*b*n* 
*2*p + 6*x**n*b*n*p + 3*x**n*b*n + 9*x**n*b + a*n**2*p**2 + a*n**2*p + 6*a 
*n*p + 3*a*n + 9*a),x)*a**2*n**4*p**2 - 6*int(((x**n*b + a)**p*x**2)/(x**n 
*b*n**2*p**2 + x**n*b*n**2*p + 6*x**n*b*n*p + 3*x**n*b*n + 9*x**n*b + a*n* 
*2*p**2 + a*n**2*p + 6*a*n*p + 3*a*n + 9*a),x)*a**2*n**3*p**4 + 6*int(((x* 
*n*b + a)**p*x**2)/(x**n*b*n**2*p**2 + x**n*b*n**2*p + 6*x**n*b*n*p + 3*x* 
*n*b*n + 9*x**n*b + a*n**2*p**2 + a*n**2*p + 6*a*n*p + 3*a*n + 9*a),x)*a** 
2*n**3*p**3 + 21*int(((x**n*b + a)**p*x**2)/(x**n*b*n**2*p**2 + x**n*b*n** 
2*p + 6*x**n*b*n*p + 3*x**n*b*n + 9*x**n*b + a*n**2*p**2 + a*n**2*p + 6*a* 
n*p + 3*a*n + 9*a),x)*a**2*n**3*p**2 + 9*int(((x**n*b + a)**p*x**2)/(x**n* 
b*n**2*p**2 + x**n*b*n**2*p + 6*x**n*b*n*p + 3*x**n*b*n + 9*x**n*b + a*n** 
2*p**2 + a*n**2*p + 6*a*n*p + 3*a*n + 9*a),x)*a**2*n**3*p - 36*int(((x*...