\(\int x^{-1-n (1+p)} (a+b x^n)^p (c+d x^n)^3 \, dx\) [525]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 210 \[ \int x^{-1-n (1+p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^3 \, dx=\frac {d^3 x^{n (1-p)} \left (a+b x^n\right )^{1+p}}{2 b n}-\frac {3 c^2 d x^{-n p} \left (a+b x^n\right )^{1+p}}{a n p}-\frac {c^3 x^{-n (1+p)} \left (a+b x^n\right )^{1+p}}{a n (1+p)}+\frac {d \left (6 b^2 c^2+6 a b c d p-a^2 d^2 (1-p) p\right ) x^{n (1-p)} \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (1-p,-p,2-p,-\frac {b x^n}{a}\right )}{2 a b n (1-p) p} \] Output:

1/2*d^3*x^(n*(1-p))*(a+b*x^n)^(p+1)/b/n-3*c^2*d*(a+b*x^n)^(p+1)/a/n/p/(x^( 
n*p))-c^3*(a+b*x^n)^(p+1)/a/n/(p+1)/(x^(n*(p+1)))+1/2*d*(6*b^2*c^2+6*a*b*c 
*d*p-a^2*d^2*(1-p)*p)*x^(n*(1-p))*(a+b*x^n)^p*hypergeom([-p, 1-p],[-p+2],- 
b*x^n/a)/a/b/n/(1-p)/p/((1+b*x^n/a)^p)
 

Mathematica [A] (verified)

Time = 5.39 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.93 \[ \int x^{-1-n (1+p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^3 \, dx=\frac {x^{-n (1+p)} \left (a+b x^n\right )^p \left (-\frac {3 c d^2 x^{2 n} \left (1+\frac {b x^n}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (1-p,-p,2-p,-\frac {b x^n}{a}\right )}{-1+p}-\frac {d^3 x^{3 n} \left (1+\frac {b x^n}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (2-p,-p,3-p,-\frac {b x^n}{a}\right )}{-2+p}+c^2 \left (-\frac {a c+b c x^n}{a+a p}-\frac {3 d x^n \left (1+\frac {b x^n}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,-\frac {b x^n}{a}\right )}{p}\right )\right )}{n} \] Input:

Integrate[x^(-1 - n*(1 + p))*(a + b*x^n)^p*(c + d*x^n)^3,x]
 

Output:

((a + b*x^n)^p*((-3*c*d^2*x^(2*n)*Hypergeometric2F1[1 - p, -p, 2 - p, -((b 
*x^n)/a)])/((-1 + p)*(1 + (b*x^n)/a)^p) - (d^3*x^(3*n)*Hypergeometric2F1[2 
 - p, -p, 3 - p, -((b*x^n)/a)])/((-2 + p)*(1 + (b*x^n)/a)^p) + c^2*(-((a*c 
 + b*c*x^n)/(a + a*p)) - (3*d*x^n*Hypergeometric2F1[-p, -p, 1 - p, -((b*x^ 
n)/a)])/(p*(1 + (b*x^n)/a)^p))))/(n*x^(n*(1 + p)))
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.25, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {1008, 1066, 954, 882, 74}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^{-n (p+1)-1} \left (c+d x^n\right )^3 \left (a+b x^n\right )^p \, dx\)

\(\Big \downarrow \) 1008

\(\displaystyle \frac {\int x^{-n (p+1)-1} \left (b x^n+a\right )^p \left (d x^n+c\right ) \left (d n (4 b c-a d (1-p)) x^n+c n (2 b c+a d (p+1))\right )dx}{2 b n}+\frac {d x^{-n (p+1)} \left (c+d x^n\right )^2 \left (a+b x^n\right )^{p+1}}{2 b n}\)

\(\Big \downarrow \) 1066

\(\displaystyle \frac {\frac {\int x^{-n (p+1)-1} \left (b x^n+a\right )^p \left (d n^2 \left (6 b^2 c^2+6 a b d p c-a^2 d^2 (1-p) p\right ) x^n+c n^2 \left (2 b^2 c^2+5 a b d (p+1) c-a^2 d^2 \left (1-p^2\right )\right )\right )dx}{b n}+\frac {d x^{-n (p+1)} \left (c+d x^n\right ) (4 b c-a d (1-p)) \left (a+b x^n\right )^{p+1}}{b}}{2 b n}+\frac {d x^{-n (p+1)} \left (c+d x^n\right )^2 \left (a+b x^n\right )^{p+1}}{2 b n}\)

\(\Big \downarrow \) 954

\(\displaystyle \frac {\frac {\frac {d n^2 \left (-a^2 d^2 (1-p) p+6 a b c d p+6 b^2 c^2\right ) \int x^{-n (p+1)-1} \left (b x^n+a\right )^{p+1}dx}{b}-\frac {n x^{-n (p+1)} (b c-a d) \left (-a^2 d^2 (1-p) p+a b c d (5 p+1)+2 b^2 c^2\right ) \left (a+b x^n\right )^{p+1}}{a b (p+1)}}{b n}+\frac {d x^{-n (p+1)} \left (c+d x^n\right ) (4 b c-a d (1-p)) \left (a+b x^n\right )^{p+1}}{b}}{2 b n}+\frac {d x^{-n (p+1)} \left (c+d x^n\right )^2 \left (a+b x^n\right )^{p+1}}{2 b n}\)

\(\Big \downarrow \) 882

\(\displaystyle \frac {\frac {\frac {d n x^{-n (p+1)} \left (-a^2 d^2 (1-p) p+6 a b c d p+6 b^2 c^2\right ) \left (\frac {x^n}{a+b x^n}\right )^{p+1} \left (a+b x^n\right )^{p+1} \int \frac {\left (\frac {x^n}{b x^n+a}\right )^{-p-2}}{1-\frac {b x^n}{b x^n+a}}d\frac {x^n}{b x^n+a}}{b}-\frac {n x^{-n (p+1)} (b c-a d) \left (-a^2 d^2 (1-p) p+a b c d (5 p+1)+2 b^2 c^2\right ) \left (a+b x^n\right )^{p+1}}{a b (p+1)}}{b n}+\frac {d x^{-n (p+1)} \left (c+d x^n\right ) (4 b c-a d (1-p)) \left (a+b x^n\right )^{p+1}}{b}}{2 b n}+\frac {d x^{-n (p+1)} \left (c+d x^n\right )^2 \left (a+b x^n\right )^{p+1}}{2 b n}\)

\(\Big \downarrow \) 74

\(\displaystyle \frac {\frac {-\frac {d n x^{-n (p+1)} \left (-a^2 d^2 (1-p) p+6 a b c d p+6 b^2 c^2\right ) \left (a+b x^n\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,-p-1,-p,\frac {b x^n}{b x^n+a}\right )}{b (p+1)}-\frac {n x^{-n (p+1)} (b c-a d) \left (-a^2 d^2 (1-p) p+a b c d (5 p+1)+2 b^2 c^2\right ) \left (a+b x^n\right )^{p+1}}{a b (p+1)}}{b n}+\frac {d x^{-n (p+1)} \left (c+d x^n\right ) (4 b c-a d (1-p)) \left (a+b x^n\right )^{p+1}}{b}}{2 b n}+\frac {d x^{-n (p+1)} \left (c+d x^n\right )^2 \left (a+b x^n\right )^{p+1}}{2 b n}\)

Input:

Int[x^(-1 - n*(1 + p))*(a + b*x^n)^p*(c + d*x^n)^3,x]
 

Output:

(d*(a + b*x^n)^(1 + p)*(c + d*x^n)^2)/(2*b*n*x^(n*(1 + p))) + ((d*(4*b*c - 
 a*d*(1 - p))*(a + b*x^n)^(1 + p)*(c + d*x^n))/(b*x^(n*(1 + p))) + (-(((b* 
c - a*d)*n*(2*b^2*c^2 - a^2*d^2*(1 - p)*p + a*b*c*d*(1 + 5*p))*(a + b*x^n) 
^(1 + p))/(a*b*(1 + p)*x^(n*(1 + p)))) - (d*n*(6*b^2*c^2 + 6*a*b*c*d*p - a 
^2*d^2*(1 - p)*p)*(a + b*x^n)^(1 + p)*Hypergeometric2F1[1, -1 - p, -p, (b* 
x^n)/(a + b*x^n)])/(b*(1 + p)*x^(n*(1 + p))))/(b*n))/(2*b*n)
 

Defintions of rubi rules used

rule 74
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[c^n*((b*x 
)^(m + 1)/(b*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*(x/c)], x] 
/; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] && (IntegerQ[n] || (GtQ[c, 0] 
 &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0] && GtQ[-d/(b*c), 0])))
 

rule 882
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^Simplify[ 
(m + 1)/n + p]*x^m*(a + b*x^n)^p*((x^n/(a + b*x^n))^p/(n*x^Simplify[m + n*p 
]))   Subst[Int[x^((m + 1)/n - 1)/(1 - b*x)^(Simplify[(m + 1)/n + p] + 1), 
x], x, x^n/(a + b*x^n)], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simpli 
fy[(m + 1)/n + p]]
 

rule 954
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[(b*c - a*d)*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b* 
e*(m + 1))), x] + Simp[d/b   Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; Fre 
eQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n*(p + 1) + 
 1, 0] && NeQ[m, -1]
 

rule 1008
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[d*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n) 
^(q - 1)/(b*e*(m + n*(p + q) + 1))), x] + Simp[1/(b*(m + n*(p + q) + 1)) 
Int[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*((c*b - a*d)*(m + 1) + 
 c*b*n*(p + q)) + (d*(c*b - a*d)*(m + 1) + d*n*(q - 1)*(b*c - a*d) + c*b*d* 
n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c 
 - a*d, 0] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1066
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[f*(g*x)^(m + 1)*(a + 
b*x^n)^(p + 1)*((c + d*x^n)^q/(b*g*(m + n*(p + q + 1) + 1))), x] + Simp[1/( 
b*(m + n*(p + q + 1) + 1))   Int[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 1)* 
Simp[c*((b*e - a*f)*(m + 1) + b*e*n*(p + q + 1)) + (d*(b*e - a*f)*(m + 1) + 
 f*n*q*(b*c - a*d) + b*e*d*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c 
, d, e, f, g, m, n, p}, x] && GtQ[q, 0] &&  !(EqQ[q, 1] && SimplerQ[e + f*x 
^n, c + d*x^n])
 
Maple [F]

\[\int x^{-1-n \left (p +1\right )} \left (a +b \,x^{n}\right )^{p} \left (c +d \,x^{n}\right )^{3}d x\]

Input:

int(x^(-1-n*(p+1))*(a+b*x^n)^p*(c+d*x^n)^3,x)
 

Output:

int(x^(-1-n*(p+1))*(a+b*x^n)^p*(c+d*x^n)^3,x)
 

Fricas [F]

\[ \int x^{-1-n (1+p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^3 \, dx=\int { {\left (d x^{n} + c\right )}^{3} {\left (b x^{n} + a\right )}^{p} x^{-n {\left (p + 1\right )} - 1} \,d x } \] Input:

integrate(x^(-1-n*(p+1))*(a+b*x^n)^p*(c+d*x^n)^3,x, algorithm="fricas")
 

Output:

integral((d^3*x^(-n*p - n - 1)*x^(3*n) + 3*c*d^2*x^(-n*p - n - 1)*x^(2*n) 
+ 3*c^2*d*x^(-n*p - n - 1)*x^n + c^3*x^(-n*p - n - 1))*(b*x^n + a)^p, x)
 

Sympy [F(-1)]

Timed out. \[ \int x^{-1-n (1+p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^3 \, dx=\text {Timed out} \] Input:

integrate(x**(-1-n*(p+1))*(a+b*x**n)**p*(c+d*x**n)**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int x^{-1-n (1+p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^3 \, dx=\int { {\left (d x^{n} + c\right )}^{3} {\left (b x^{n} + a\right )}^{p} x^{-n {\left (p + 1\right )} - 1} \,d x } \] Input:

integrate(x^(-1-n*(p+1))*(a+b*x^n)^p*(c+d*x^n)^3,x, algorithm="maxima")
 

Output:

integrate((d*x^n + c)^3*(b*x^n + a)^p*x^(-n*(p + 1) - 1), x)
 

Giac [F(-2)]

Exception generated. \[ \int x^{-1-n (1+p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^3 \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^(-1-n*(p+1))*(a+b*x^n)^p*(c+d*x^n)^3,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{1,[2,0,2,4,2,4,4,3,0]%%%}+%%%{4,[2,0,2,4,2,4,3,3,0]%%%}+%% 
%{6,[2,0,
 

Mupad [F(-1)]

Timed out. \[ \int x^{-1-n (1+p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^3 \, dx=\int \frac {{\left (a+b\,x^n\right )}^p\,{\left (c+d\,x^n\right )}^3}{x^{n\,\left (p+1\right )+1}} \,d x \] Input:

int(((a + b*x^n)^p*(c + d*x^n)^3)/x^(n*(p + 1) + 1),x)
 

Output:

int(((a + b*x^n)^p*(c + d*x^n)^3)/x^(n*(p + 1) + 1), x)
 

Reduce [F]

\[ \int x^{-1-n (1+p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^3 \, dx=\frac {x^{3 n} \left (x^{n} b +a \right )^{p} a b \,d^{3} p^{2}+x^{3 n} \left (x^{n} b +a \right )^{p} a b \,d^{3} p +x^{2 n} \left (x^{n} b +a \right )^{p} a^{2} d^{3} p^{3}+x^{2 n} \left (x^{n} b +a \right )^{p} a^{2} d^{3} p^{2}+6 x^{2 n} \left (x^{n} b +a \right )^{p} a b c \,d^{2} p^{2}+6 x^{2 n} \left (x^{n} b +a \right )^{p} a b c \,d^{2} p -6 x^{n} \left (x^{n} b +a \right )^{p} a b \,c^{2} d p -6 x^{n} \left (x^{n} b +a \right )^{p} a b \,c^{2} d -2 x^{n} \left (x^{n} b +a \right )^{p} b^{2} c^{3} p -2 \left (x^{n} b +a \right )^{p} a b \,c^{3} p +x^{n p +n} \left (\int \frac {x^{n} \left (x^{n} b +a \right )^{p}}{x^{n p +n} b x +x^{n p} a x}d x \right ) a^{3} d^{3} n \,p^{4}-x^{n p +n} \left (\int \frac {x^{n} \left (x^{n} b +a \right )^{p}}{x^{n p +n} b x +x^{n p} a x}d x \right ) a^{3} d^{3} n \,p^{2}+6 x^{n p +n} \left (\int \frac {x^{n} \left (x^{n} b +a \right )^{p}}{x^{n p +n} b x +x^{n p} a x}d x \right ) a^{2} b c \,d^{2} n \,p^{3}+6 x^{n p +n} \left (\int \frac {x^{n} \left (x^{n} b +a \right )^{p}}{x^{n p +n} b x +x^{n p} a x}d x \right ) a^{2} b c \,d^{2} n \,p^{2}+6 x^{n p +n} \left (\int \frac {x^{n} \left (x^{n} b +a \right )^{p}}{x^{n p +n} b x +x^{n p} a x}d x \right ) a \,b^{2} c^{2} d n \,p^{2}+6 x^{n p +n} \left (\int \frac {x^{n} \left (x^{n} b +a \right )^{p}}{x^{n p +n} b x +x^{n p} a x}d x \right ) a \,b^{2} c^{2} d n p}{2 x^{n p +n} a b n p \left (p +1\right )} \] Input:

int(x^(-1-n*(p+1))*(a+b*x^n)^p*(c+d*x^n)^3,x)
 

Output:

(x**(3*n)*(x**n*b + a)**p*a*b*d**3*p**2 + x**(3*n)*(x**n*b + a)**p*a*b*d** 
3*p + x**(2*n)*(x**n*b + a)**p*a**2*d**3*p**3 + x**(2*n)*(x**n*b + a)**p*a 
**2*d**3*p**2 + 6*x**(2*n)*(x**n*b + a)**p*a*b*c*d**2*p**2 + 6*x**(2*n)*(x 
**n*b + a)**p*a*b*c*d**2*p - 6*x**n*(x**n*b + a)**p*a*b*c**2*d*p - 6*x**n* 
(x**n*b + a)**p*a*b*c**2*d - 2*x**n*(x**n*b + a)**p*b**2*c**3*p - 2*(x**n* 
b + a)**p*a*b*c**3*p + x**(n*p + n)*int((x**n*(x**n*b + a)**p)/(x**(n*p + 
n)*b*x + x**(n*p)*a*x),x)*a**3*d**3*n*p**4 - x**(n*p + n)*int((x**n*(x**n* 
b + a)**p)/(x**(n*p + n)*b*x + x**(n*p)*a*x),x)*a**3*d**3*n*p**2 + 6*x**(n 
*p + n)*int((x**n*(x**n*b + a)**p)/(x**(n*p + n)*b*x + x**(n*p)*a*x),x)*a* 
*2*b*c*d**2*n*p**3 + 6*x**(n*p + n)*int((x**n*(x**n*b + a)**p)/(x**(n*p + 
n)*b*x + x**(n*p)*a*x),x)*a**2*b*c*d**2*n*p**2 + 6*x**(n*p + n)*int((x**n* 
(x**n*b + a)**p)/(x**(n*p + n)*b*x + x**(n*p)*a*x),x)*a*b**2*c**2*d*n*p**2 
 + 6*x**(n*p + n)*int((x**n*(x**n*b + a)**p)/(x**(n*p + n)*b*x + x**(n*p)* 
a*x),x)*a*b**2*c**2*d*n*p)/(2*x**(n*p + n)*a*b*n*p*(p + 1))