\(\int x^{-1-n (3+2 p)} (a+b x^n)^p (c+d x^n)^p \, dx\) [565]

Optimal result
Mathematica [F]
Rubi [F]
Maple [F]
Fricas [F]
Sympy [F(-2)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 264 \[ \int x^{-1-n (3+2 p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx=\frac {(b c+a d) (2+p) x^{-2 n (1+p)} \left (a+b x^n\right )^{1+p} \left (c+d x^n\right )^{1+p}}{2 a^2 c^2 n (1+p) (3+2 p)}-\frac {x^{-n (3+2 p)} \left (a+b x^n\right )^{1+p} \left (c+d x^n\right )^{1+p}}{a c n (3+2 p)}-\frac {\left (2 a b c d (1+p)+b^2 c^2 (2+p)+a^2 d^2 (2+p)\right ) x^{-n (1+2 p)} \left (a+b x^n\right )^{1+p} \left (c+d x^n\right )^p \left (\frac {a \left (c+d x^n\right )}{c \left (a+b x^n\right )}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-1-2 p,-p,-2 p,\frac {(b c-a d) x^n}{c \left (a+b x^n\right )}\right )}{2 a^3 c^2 n (1+2 p) (3+2 p)} \] Output:

1/2*(a*d+b*c)*(2+p)*(a+b*x^n)^(p+1)*(c+d*x^n)^(p+1)/a^2/c^2/n/(p+1)/(3+2*p 
)/(x^(2*n*(p+1)))-(a+b*x^n)^(p+1)*(c+d*x^n)^(p+1)/a/c/n/(3+2*p)/(x^(n*(3+2 
*p)))-1/2*(2*a*b*c*d*(p+1)+b^2*c^2*(2+p)+a^2*d^2*(2+p))*(a+b*x^n)^(p+1)*(c 
+d*x^n)^p*hypergeom([-p, -1-2*p],[-2*p],(-a*d+b*c)*x^n/c/(a+b*x^n))/a^3/c^ 
2/n/(1+2*p)/(3+2*p)/(x^(n*(1+2*p)))/((a*(c+d*x^n)/c/(a+b*x^n))^p)
 

Mathematica [F]

\[ \int x^{-1-n (3+2 p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx=\int x^{-1-n (3+2 p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx \] Input:

Integrate[x^(-1 - n*(3 + 2*p))*(a + b*x^n)^p*(c + d*x^n)^p,x]
 

Output:

Integrate[x^(-1 - n*(3 + 2*p))*(a + b*x^n)^p*(c + d*x^n)^p, x]
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^{-n (2 p+3)-1} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} \int x^{-2 p n-3 n-1} \left (\frac {b x^n}{a}+1\right )^p \left (d x^n+c\right )^pdx\)

\(\Big \downarrow \) 1013

\(\displaystyle \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} \left (c+d x^n\right )^p \left (\frac {d x^n}{c}+1\right )^{-p} \int x^{-2 p n-3 n-1} \left (\frac {b x^n}{a}+1\right )^p \left (\frac {d x^n}{c}+1\right )^pdx\)

\(\Big \downarrow \) 7299

\(\displaystyle \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} \left (c+d x^n\right )^p \left (\frac {d x^n}{c}+1\right )^{-p} \int x^{-2 p n-3 n-1} \left (\frac {b x^n}{a}+1\right )^p \left (\frac {d x^n}{c}+1\right )^pdx\)

Input:

Int[x^(-1 - n*(3 + 2*p))*(a + b*x^n)^p*(c + d*x^n)^p,x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
Maple [F]

\[\int x^{-1-n \left (3+2 p \right )} \left (a +b \,x^{n}\right )^{p} \left (c +d \,x^{n}\right )^{p}d x\]

Input:

int(x^(-1-n*(3+2*p))*(a+b*x^n)^p*(c+d*x^n)^p,x)
 

Output:

int(x^(-1-n*(3+2*p))*(a+b*x^n)^p*(c+d*x^n)^p,x)
 

Fricas [F]

\[ \int x^{-1-n (3+2 p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx=\int { {\left (b x^{n} + a\right )}^{p} {\left (d x^{n} + c\right )}^{p} x^{-n {\left (2 \, p + 3\right )} - 1} \,d x } \] Input:

integrate(x^(-1-n*(3+2*p))*(a+b*x^n)^p*(c+d*x^n)^p,x, algorithm="fricas")
 

Output:

integral((b*x^n + a)^p*(d*x^n + c)^p*x^(-2*n*p - 3*n - 1), x)
 

Sympy [F(-2)]

Exception generated. \[ \int x^{-1-n (3+2 p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx=\text {Exception raised: HeuristicGCDFailed} \] Input:

integrate(x**(-1-n*(3+2*p))*(a+b*x**n)**p*(c+d*x**n)**p,x)
 

Output:

Exception raised: HeuristicGCDFailed >> no luck
 

Maxima [F]

\[ \int x^{-1-n (3+2 p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx=\int { {\left (b x^{n} + a\right )}^{p} {\left (d x^{n} + c\right )}^{p} x^{-n {\left (2 \, p + 3\right )} - 1} \,d x } \] Input:

integrate(x^(-1-n*(3+2*p))*(a+b*x^n)^p*(c+d*x^n)^p,x, algorithm="maxima")
 

Output:

integrate((b*x^n + a)^p*(d*x^n + c)^p*x^(-n*(2*p + 3) - 1), x)
 

Giac [F]

\[ \int x^{-1-n (3+2 p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx=\int { {\left (b x^{n} + a\right )}^{p} {\left (d x^{n} + c\right )}^{p} x^{-n {\left (2 \, p + 3\right )} - 1} \,d x } \] Input:

integrate(x^(-1-n*(3+2*p))*(a+b*x^n)^p*(c+d*x^n)^p,x, algorithm="giac")
 

Output:

integrate((b*x^n + a)^p*(d*x^n + c)^p*x^(-n*(2*p + 3) - 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int x^{-1-n (3+2 p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx=\int \frac {{\left (a+b\,x^n\right )}^p\,{\left (c+d\,x^n\right )}^p}{x^{n\,\left (2\,p+3\right )+1}} \,d x \] Input:

int(((a + b*x^n)^p*(c + d*x^n)^p)/x^(n*(2*p + 3) + 1),x)
 

Output:

int(((a + b*x^n)^p*(c + d*x^n)^p)/x^(n*(2*p + 3) + 1), x)
 

Reduce [F]

\[ \int x^{-1-n (3+2 p)} \left (a+b x^n\right )^p \left (c+d x^n\right )^p \, dx=\text {too large to display} \] Input:

int(x^(-1-n*(3+2*p))*(a+b*x^n)^p*(c+d*x^n)^p,x)
 

Output:

( - x**(3*n)*(x**n*d + c)**p*(x**n*b + a)**p*a**2*b*d**3*p - 2*x**(3*n)*(x 
**n*d + c)**p*(x**n*b + a)**p*a**2*b*d**3 + 2*x**(3*n)*(x**n*d + c)**p*(x* 
*n*b + a)**p*a*b**2*c*d**2*p - x**(3*n)*(x**n*d + c)**p*(x**n*b + a)**p*b* 
*3*c**2*d*p - 2*x**(3*n)*(x**n*d + c)**p*(x**n*b + a)**p*b**3*c**2*d + x** 
(2*n)*(x**n*d + c)**p*(x**n*b + a)**p*a**3*d**3*p**2 + 2*x**(2*n)*(x**n*d 
+ c)**p*(x**n*b + a)**p*a**3*d**3*p - x**(2*n)*(x**n*d + c)**p*(x**n*b + a 
)**p*a**2*b*c*d**2*p**2 + 2*x**(2*n)*(x**n*d + c)**p*(x**n*b + a)**p*a**2* 
b*c*d**2*p - x**(2*n)*(x**n*d + c)**p*(x**n*b + a)**p*a*b**2*c**2*d*p**2 + 
 2*x**(2*n)*(x**n*d + c)**p*(x**n*b + a)**p*a*b**2*c**2*d*p + x**(2*n)*(x* 
*n*d + c)**p*(x**n*b + a)**p*b**3*c**3*p**2 + 2*x**(2*n)*(x**n*d + c)**p*( 
x**n*b + a)**p*b**3*c**3*p - 2*x**n*(x**n*d + c)**p*(x**n*b + a)**p*a**3*c 
*d**2*p**2 - x**n*(x**n*d + c)**p*(x**n*b + a)**p*a**3*c*d**2*p - 4*x**n*( 
x**n*d + c)**p*(x**n*b + a)**p*a**2*b*c**2*d*p**2 - 2*x**n*(x**n*d + c)**p 
*(x**n*b + a)**p*a**2*b*c**2*d*p - 2*x**n*(x**n*d + c)**p*(x**n*b + a)**p* 
a*b**2*c**3*p**2 - x**n*(x**n*d + c)**p*(x**n*b + a)**p*a*b**2*c**3*p - 4* 
(x**n*d + c)**p*(x**n*b + a)**p*a**3*c**2*d*p**2 - 6*(x**n*d + c)**p*(x**n 
*b + a)**p*a**3*c**2*d*p - 2*(x**n*d + c)**p*(x**n*b + a)**p*a**3*c**2*d - 
 4*(x**n*d + c)**p*(x**n*b + a)**p*a**2*b*c**3*p**2 - 6*(x**n*d + c)**p*(x 
**n*b + a)**p*a**2*b*c**3*p - 2*(x**n*d + c)**p*(x**n*b + a)**p*a**2*b*c** 
3 + 4*x**(2*n*p + 3*n)*int(((x**n*d + c)**p*(x**n*b + a)**p)/(4*x**(2*n...