\(\int x^2 \sqrt {-c+d x} \sqrt {c+d x} (a+b x^2) \, dx\) [8]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 158 \[ \int x^2 \sqrt {-c+d x} \sqrt {c+d x} \left (a+b x^2\right ) \, dx=-\frac {c^2 \left (b c^2+2 a d^2\right ) x \sqrt {-c+d x} \sqrt {c+d x}}{16 d^4}+\frac {1}{8} \left (2 a+\frac {b c^2}{d^2}\right ) x^3 \sqrt {-c+d x} \sqrt {c+d x}+\frac {b x^3 (-c+d x)^{3/2} (c+d x)^{3/2}}{6 d^2}-\frac {c^4 \left (b c^2+2 a d^2\right ) \text {arctanh}\left (\frac {\sqrt {-c+d x}}{\sqrt {c+d x}}\right )}{8 d^5} \] Output:

-1/16*c^2*(2*a*d^2+b*c^2)*x*(d*x-c)^(1/2)*(d*x+c)^(1/2)/d^4+1/8*(2*a+b*c^2 
/d^2)*x^3*(d*x-c)^(1/2)*(d*x+c)^(1/2)+1/6*b*x^3*(d*x-c)^(3/2)*(d*x+c)^(3/2 
)/d^2-1/8*c^4*(2*a*d^2+b*c^2)*arctanh((d*x-c)^(1/2)/(d*x+c)^(1/2))/d^5
 

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.73 \[ \int x^2 \sqrt {-c+d x} \sqrt {c+d x} \left (a+b x^2\right ) \, dx=\frac {d x \sqrt {-c+d x} \sqrt {c+d x} \left (-6 a d^2 \left (c^2-2 d^2 x^2\right )+b \left (-3 c^4-2 c^2 d^2 x^2+8 d^4 x^4\right )\right )-6 c^4 \left (b c^2+2 a d^2\right ) \text {arctanh}\left (\frac {\sqrt {-c+d x}}{\sqrt {c+d x}}\right )}{48 d^5} \] Input:

Integrate[x^2*Sqrt[-c + d*x]*Sqrt[c + d*x]*(a + b*x^2),x]
 

Output:

(d*x*Sqrt[-c + d*x]*Sqrt[c + d*x]*(-6*a*d^2*(c^2 - 2*d^2*x^2) + b*(-3*c^4 
- 2*c^2*d^2*x^2 + 8*d^4*x^4)) - 6*c^4*(b*c^2 + 2*a*d^2)*ArcTanh[Sqrt[-c + 
d*x]/Sqrt[c + d*x]])/(48*d^5)
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.91, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {960, 101, 27, 40, 45, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \left (a+b x^2\right ) \sqrt {d x-c} \sqrt {c+d x} \, dx\)

\(\Big \downarrow \) 960

\(\displaystyle \frac {1}{2} \left (2 a+\frac {b c^2}{d^2}\right ) \int x^2 \sqrt {d x-c} \sqrt {c+d x}dx+\frac {b x^3 (d x-c)^{3/2} (c+d x)^{3/2}}{6 d^2}\)

\(\Big \downarrow \) 101

\(\displaystyle \frac {1}{2} \left (2 a+\frac {b c^2}{d^2}\right ) \left (\frac {\int c^2 \sqrt {d x-c} \sqrt {c+d x}dx}{4 d^2}+\frac {x (d x-c)^{3/2} (c+d x)^{3/2}}{4 d^2}\right )+\frac {b x^3 (d x-c)^{3/2} (c+d x)^{3/2}}{6 d^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (2 a+\frac {b c^2}{d^2}\right ) \left (\frac {c^2 \int \sqrt {d x-c} \sqrt {c+d x}dx}{4 d^2}+\frac {x (d x-c)^{3/2} (c+d x)^{3/2}}{4 d^2}\right )+\frac {b x^3 (d x-c)^{3/2} (c+d x)^{3/2}}{6 d^2}\)

\(\Big \downarrow \) 40

\(\displaystyle \frac {1}{2} \left (2 a+\frac {b c^2}{d^2}\right ) \left (\frac {c^2 \left (\frac {1}{2} x \sqrt {d x-c} \sqrt {c+d x}-\frac {1}{2} c^2 \int \frac {1}{\sqrt {d x-c} \sqrt {c+d x}}dx\right )}{4 d^2}+\frac {x (d x-c)^{3/2} (c+d x)^{3/2}}{4 d^2}\right )+\frac {b x^3 (d x-c)^{3/2} (c+d x)^{3/2}}{6 d^2}\)

\(\Big \downarrow \) 45

\(\displaystyle \frac {1}{2} \left (2 a+\frac {b c^2}{d^2}\right ) \left (\frac {c^2 \left (\frac {1}{2} x \sqrt {d x-c} \sqrt {c+d x}-c^2 \int \frac {1}{d-\frac {d (d x-c)}{c+d x}}d\frac {\sqrt {d x-c}}{\sqrt {c+d x}}\right )}{4 d^2}+\frac {x (d x-c)^{3/2} (c+d x)^{3/2}}{4 d^2}\right )+\frac {b x^3 (d x-c)^{3/2} (c+d x)^{3/2}}{6 d^2}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} \left (2 a+\frac {b c^2}{d^2}\right ) \left (\frac {c^2 \left (\frac {1}{2} x \sqrt {d x-c} \sqrt {c+d x}-\frac {c^2 \text {arctanh}\left (\frac {\sqrt {d x-c}}{\sqrt {c+d x}}\right )}{d}\right )}{4 d^2}+\frac {x (d x-c)^{3/2} (c+d x)^{3/2}}{4 d^2}\right )+\frac {b x^3 (d x-c)^{3/2} (c+d x)^{3/2}}{6 d^2}\)

Input:

Int[x^2*Sqrt[-c + d*x]*Sqrt[c + d*x]*(a + b*x^2),x]
 

Output:

(b*x^3*(-c + d*x)^(3/2)*(c + d*x)^(3/2))/(6*d^2) + ((2*a + (b*c^2)/d^2)*(( 
x*(-c + d*x)^(3/2)*(c + d*x)^(3/2))/(4*d^2) + (c^2*((x*Sqrt[-c + d*x]*Sqrt 
[c + d*x])/2 - (c^2*ArcTanh[Sqrt[-c + d*x]/Sqrt[c + d*x]])/d))/(4*d^2)))/2
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 40
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[x* 
(a + b*x)^m*((c + d*x)^m/(2*m + 1)), x] + Simp[2*a*c*(m/(2*m + 1))   Int[(a 
 + b*x)^(m - 1)*(c + d*x)^(m - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[ 
b*c + a*d, 0] && IGtQ[m + 1/2, 0]
 

rule 45
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] &&  !GtQ[c, 0]
 

rule 101
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[b*(a + b*x)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + 
 p + 3))), x] + Simp[1/(d*f*(n + p + 3))   Int[(c + d*x)^n*(e + f*x)^p*Simp 
[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f 
*(n + p + 4) - b*(d*e*(n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, 
 c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 960
Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.) 
*(x_)^(non2_.))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^( 
m + 1)*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2))^(p + 1)/(b1*b2*e*(m + n 
*(p + 1) + 1))), x] - Simp[(a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1))/ 
(b1*b2*(m + n*(p + 1) + 1))   Int[(e*x)^m*(a1 + b1*x^(n/2))^p*(a2 + b2*x^(n 
/2))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, e, m, n, p}, x] && EqQ[non2, 
 n/2] && EqQ[a2*b1 + a1*b2, 0] && NeQ[m + n*(p + 1) + 1, 0]
 
Maple [A] (verified)

Time = 0.11 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.01

method result size
risch \(\frac {x \left (-8 b \,x^{4} d^{4}-12 a \,d^{4} x^{2}+2 b \,c^{2} d^{2} x^{2}+6 a \,c^{2} d^{2}+3 b \,c^{4}\right ) \left (-d x +c \right ) \sqrt {d x +c}}{48 d^{4} \sqrt {d x -c}}-\frac {c^{4} \left (2 a \,d^{2}+b \,c^{2}\right ) \ln \left (\frac {d^{2} x}{\sqrt {d^{2}}}+\sqrt {d^{2} x^{2}-c^{2}}\right ) \sqrt {\left (d x -c \right ) \left (d x +c \right )}}{16 d^{4} \sqrt {d^{2}}\, \sqrt {d x -c}\, \sqrt {d x +c}}\) \(159\)
default \(-\frac {\sqrt {d x -c}\, \sqrt {d x +c}\, \left (-8 \,\operatorname {csgn}\left (d \right ) b \,d^{5} x^{5} \sqrt {d^{2} x^{2}-c^{2}}-12 \,\operatorname {csgn}\left (d \right ) a \,d^{5} x^{3} \sqrt {d^{2} x^{2}-c^{2}}+2 \,\operatorname {csgn}\left (d \right ) b \,c^{2} d^{3} x^{3} \sqrt {d^{2} x^{2}-c^{2}}+6 \,\operatorname {csgn}\left (d \right ) d^{3} \sqrt {d^{2} x^{2}-c^{2}}\, a \,c^{2} x +3 \,\operatorname {csgn}\left (d \right ) d \sqrt {d^{2} x^{2}-c^{2}}\, b \,c^{4} x +6 \ln \left (\left (\sqrt {d^{2} x^{2}-c^{2}}\, \operatorname {csgn}\left (d \right )+d x \right ) \operatorname {csgn}\left (d \right )\right ) a \,c^{4} d^{2}+3 \ln \left (\left (\sqrt {d^{2} x^{2}-c^{2}}\, \operatorname {csgn}\left (d \right )+d x \right ) \operatorname {csgn}\left (d \right )\right ) b \,c^{6}\right ) \operatorname {csgn}\left (d \right )}{48 \sqrt {d^{2} x^{2}-c^{2}}\, d^{5}}\) \(240\)

Input:

int(x^2*(d*x-c)^(1/2)*(d*x+c)^(1/2)*(b*x^2+a),x,method=_RETURNVERBOSE)
 

Output:

1/48*x*(-8*b*d^4*x^4-12*a*d^4*x^2+2*b*c^2*d^2*x^2+6*a*c^2*d^2+3*b*c^4)*(-d 
*x+c)*(d*x+c)^(1/2)/d^4/(d*x-c)^(1/2)-1/16*c^4*(2*a*d^2+b*c^2)/d^4*ln(d^2* 
x/(d^2)^(1/2)+(d^2*x^2-c^2)^(1/2))/(d^2)^(1/2)*((d*x-c)*(d*x+c))^(1/2)/(d* 
x-c)^(1/2)/(d*x+c)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.71 \[ \int x^2 \sqrt {-c+d x} \sqrt {c+d x} \left (a+b x^2\right ) \, dx=\frac {{\left (8 \, b d^{5} x^{5} - 2 \, {\left (b c^{2} d^{3} - 6 \, a d^{5}\right )} x^{3} - 3 \, {\left (b c^{4} d + 2 \, a c^{2} d^{3}\right )} x\right )} \sqrt {d x + c} \sqrt {d x - c} + 3 \, {\left (b c^{6} + 2 \, a c^{4} d^{2}\right )} \log \left (-d x + \sqrt {d x + c} \sqrt {d x - c}\right )}{48 \, d^{5}} \] Input:

integrate(x^2*(d*x-c)^(1/2)*(d*x+c)^(1/2)*(b*x^2+a),x, algorithm="fricas")
 

Output:

1/48*((8*b*d^5*x^5 - 2*(b*c^2*d^3 - 6*a*d^5)*x^3 - 3*(b*c^4*d + 2*a*c^2*d^ 
3)*x)*sqrt(d*x + c)*sqrt(d*x - c) + 3*(b*c^6 + 2*a*c^4*d^2)*log(-d*x + sqr 
t(d*x + c)*sqrt(d*x - c)))/d^5
 

Sympy [F]

\[ \int x^2 \sqrt {-c+d x} \sqrt {c+d x} \left (a+b x^2\right ) \, dx=\int x^{2} \left (a + b x^{2}\right ) \sqrt {- c + d x} \sqrt {c + d x}\, dx \] Input:

integrate(x**2*(d*x-c)**(1/2)*(d*x+c)**(1/2)*(b*x**2+a),x)
 

Output:

Integral(x**2*(a + b*x**2)*sqrt(-c + d*x)*sqrt(c + d*x), x)
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.22 \[ \int x^2 \sqrt {-c+d x} \sqrt {c+d x} \left (a+b x^2\right ) \, dx=\frac {{\left (d^{2} x^{2} - c^{2}\right )}^{\frac {3}{2}} b x^{3}}{6 \, d^{2}} - \frac {b c^{6} \log \left (2 \, d^{2} x + 2 \, \sqrt {d^{2} x^{2} - c^{2}} d\right )}{16 \, d^{5}} - \frac {a c^{4} \log \left (2 \, d^{2} x + 2 \, \sqrt {d^{2} x^{2} - c^{2}} d\right )}{8 \, d^{3}} + \frac {\sqrt {d^{2} x^{2} - c^{2}} b c^{4} x}{16 \, d^{4}} + \frac {\sqrt {d^{2} x^{2} - c^{2}} a c^{2} x}{8 \, d^{2}} + \frac {{\left (d^{2} x^{2} - c^{2}\right )}^{\frac {3}{2}} b c^{2} x}{8 \, d^{4}} + \frac {{\left (d^{2} x^{2} - c^{2}\right )}^{\frac {3}{2}} a x}{4 \, d^{2}} \] Input:

integrate(x^2*(d*x-c)^(1/2)*(d*x+c)^(1/2)*(b*x^2+a),x, algorithm="maxima")
 

Output:

1/6*(d^2*x^2 - c^2)^(3/2)*b*x^3/d^2 - 1/16*b*c^6*log(2*d^2*x + 2*sqrt(d^2* 
x^2 - c^2)*d)/d^5 - 1/8*a*c^4*log(2*d^2*x + 2*sqrt(d^2*x^2 - c^2)*d)/d^3 + 
 1/16*sqrt(d^2*x^2 - c^2)*b*c^4*x/d^4 + 1/8*sqrt(d^2*x^2 - c^2)*a*c^2*x/d^ 
2 + 1/8*(d^2*x^2 - c^2)^(3/2)*b*c^2*x/d^4 + 1/4*(d^2*x^2 - c^2)^(3/2)*a*x/ 
d^2
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 403 vs. \(2 (134) = 268\).

Time = 0.20 (sec) , antiderivative size = 403, normalized size of antiderivative = 2.55 \[ \int x^2 \sqrt {-c+d x} \sqrt {c+d x} \left (a+b x^2\right ) \, dx=\frac {10 \, {\left ({\left ({\left (d x + c\right )} {\left (2 \, {\left (d x + c\right )} {\left (\frac {3 \, {\left (d x + c\right )}}{d^{3}} - \frac {13 \, c}{d^{3}}\right )} + \frac {43 \, c^{2}}{d^{3}}\right )} - \frac {39 \, c^{3}}{d^{3}}\right )} \sqrt {d x + c} \sqrt {d x - c} - \frac {18 \, c^{4} \log \left ({\left | -\sqrt {d x + c} + \sqrt {d x - c} \right |}\right )}{d^{3}}\right )} a d + {\left ({\left ({\left (2 \, {\left ({\left (d x + c\right )} {\left (4 \, {\left (d x + c\right )} {\left (\frac {5 \, {\left (d x + c\right )}}{d^{5}} - \frac {31 \, c}{d^{5}}\right )} + \frac {321 \, c^{2}}{d^{5}}\right )} - \frac {451 \, c^{3}}{d^{5}}\right )} {\left (d x + c\right )} + \frac {745 \, c^{4}}{d^{5}}\right )} {\left (d x + c\right )} - \frac {405 \, c^{5}}{d^{5}}\right )} \sqrt {d x + c} \sqrt {d x - c} - \frac {150 \, c^{6} \log \left ({\left | -\sqrt {d x + c} + \sqrt {d x - c} \right |}\right )}{d^{5}}\right )} b d + \frac {40 \, {\left (6 \, c^{3} \log \left ({\left | -\sqrt {d x + c} + \sqrt {d x - c} \right |}\right ) + {\left ({\left (2 \, d x - 5 \, c\right )} {\left (d x + c\right )} + 9 \, c^{2}\right )} \sqrt {d x + c} \sqrt {d x - c}\right )} a c}{d^{2}} + \frac {2 \, {\left (90 \, c^{5} \log \left ({\left | -\sqrt {d x + c} + \sqrt {d x - c} \right |}\right ) + {\left (195 \, c^{4} - {\left (295 \, c^{3} - 2 \, {\left (3 \, {\left (4 \, d x - 17 \, c\right )} {\left (d x + c\right )} + 133 \, c^{2}\right )} {\left (d x + c\right )}\right )} {\left (d x + c\right )}\right )} \sqrt {d x + c} \sqrt {d x - c}\right )} b c}{d^{4}}}{240 \, d} \] Input:

integrate(x^2*(d*x-c)^(1/2)*(d*x+c)^(1/2)*(b*x^2+a),x, algorithm="giac")
 

Output:

1/240*(10*(((d*x + c)*(2*(d*x + c)*(3*(d*x + c)/d^3 - 13*c/d^3) + 43*c^2/d 
^3) - 39*c^3/d^3)*sqrt(d*x + c)*sqrt(d*x - c) - 18*c^4*log(abs(-sqrt(d*x + 
 c) + sqrt(d*x - c)))/d^3)*a*d + (((2*((d*x + c)*(4*(d*x + c)*(5*(d*x + c) 
/d^5 - 31*c/d^5) + 321*c^2/d^5) - 451*c^3/d^5)*(d*x + c) + 745*c^4/d^5)*(d 
*x + c) - 405*c^5/d^5)*sqrt(d*x + c)*sqrt(d*x - c) - 150*c^6*log(abs(-sqrt 
(d*x + c) + sqrt(d*x - c)))/d^5)*b*d + 40*(6*c^3*log(abs(-sqrt(d*x + c) + 
sqrt(d*x - c))) + ((2*d*x - 5*c)*(d*x + c) + 9*c^2)*sqrt(d*x + c)*sqrt(d*x 
 - c))*a*c/d^2 + 2*(90*c^5*log(abs(-sqrt(d*x + c) + sqrt(d*x - c))) + (195 
*c^4 - (295*c^3 - 2*(3*(4*d*x - 17*c)*(d*x + c) + 133*c^2)*(d*x + c))*(d*x 
 + c))*sqrt(d*x + c)*sqrt(d*x - c))*b*c/d^4)/d
 

Mupad [B] (verification not implemented)

Time = 49.66 (sec) , antiderivative size = 1681, normalized size of antiderivative = 10.64 \[ \int x^2 \sqrt {-c+d x} \sqrt {c+d x} \left (a+b x^2\right ) \, dx=\text {Too large to display} \] Input:

int(x^2*(a + b*x^2)*(c + d*x)^(1/2)*(d*x - c)^(1/2),x)
 

Output:

((35*b*c^6*((c + d*x)^(1/2) - c^(1/2))^3)/(12*((-c)^(1/2) - (d*x - c)^(1/2 
))^3) - (b*c^6*((c + d*x)^(1/2) - c^(1/2)))/(4*((-c)^(1/2) - (d*x - c)^(1/ 
2))) + (757*b*c^6*((c + d*x)^(1/2) - c^(1/2))^5)/(4*((-c)^(1/2) - (d*x - c 
)^(1/2))^5) + (7339*b*c^6*((c + d*x)^(1/2) - c^(1/2))^7)/(4*((-c)^(1/2) - 
(d*x - c)^(1/2))^7) + (41929*b*c^6*((c + d*x)^(1/2) - c^(1/2))^9)/(6*((-c) 
^(1/2) - (d*x - c)^(1/2))^9) + (25661*b*c^6*((c + d*x)^(1/2) - c^(1/2))^11 
)/(2*((-c)^(1/2) - (d*x - c)^(1/2))^11) + (25661*b*c^6*((c + d*x)^(1/2) - 
c^(1/2))^13)/(2*((-c)^(1/2) - (d*x - c)^(1/2))^13) + (41929*b*c^6*((c + d* 
x)^(1/2) - c^(1/2))^15)/(6*((-c)^(1/2) - (d*x - c)^(1/2))^15) + (7339*b*c^ 
6*((c + d*x)^(1/2) - c^(1/2))^17)/(4*((-c)^(1/2) - (d*x - c)^(1/2))^17) + 
(757*b*c^6*((c + d*x)^(1/2) - c^(1/2))^19)/(4*((-c)^(1/2) - (d*x - c)^(1/2 
))^19) + (35*b*c^6*((c + d*x)^(1/2) - c^(1/2))^21)/(12*((-c)^(1/2) - (d*x 
- c)^(1/2))^21) - (b*c^6*((c + d*x)^(1/2) - c^(1/2))^23)/(4*((-c)^(1/2) - 
(d*x - c)^(1/2))^23))/(d^5 - (12*d^5*((c + d*x)^(1/2) - c^(1/2))^2)/((-c)^ 
(1/2) - (d*x - c)^(1/2))^2 + (66*d^5*((c + d*x)^(1/2) - c^(1/2))^4)/((-c)^ 
(1/2) - (d*x - c)^(1/2))^4 - (220*d^5*((c + d*x)^(1/2) - c^(1/2))^6)/((-c) 
^(1/2) - (d*x - c)^(1/2))^6 + (495*d^5*((c + d*x)^(1/2) - c^(1/2))^8)/((-c 
)^(1/2) - (d*x - c)^(1/2))^8 - (792*d^5*((c + d*x)^(1/2) - c^(1/2))^10)/(( 
-c)^(1/2) - (d*x - c)^(1/2))^10 + (924*d^5*((c + d*x)^(1/2) - c^(1/2))^12) 
/((-c)^(1/2) - (d*x - c)^(1/2))^12 - (792*d^5*((c + d*x)^(1/2) - c^(1/2...
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.20 \[ \int x^2 \sqrt {-c+d x} \sqrt {c+d x} \left (a+b x^2\right ) \, dx=\frac {-6 \sqrt {d x +c}\, \sqrt {d x -c}\, a \,c^{2} d^{3} x +12 \sqrt {d x +c}\, \sqrt {d x -c}\, a \,d^{5} x^{3}-3 \sqrt {d x +c}\, \sqrt {d x -c}\, b \,c^{4} d x -2 \sqrt {d x +c}\, \sqrt {d x -c}\, b \,c^{2} d^{3} x^{3}+8 \sqrt {d x +c}\, \sqrt {d x -c}\, b \,d^{5} x^{5}-12 \,\mathrm {log}\left (\frac {\sqrt {d x -c}+\sqrt {d x +c}}{\sqrt {c}\, \sqrt {2}}\right ) a \,c^{4} d^{2}-6 \,\mathrm {log}\left (\frac {\sqrt {d x -c}+\sqrt {d x +c}}{\sqrt {c}\, \sqrt {2}}\right ) b \,c^{6}}{48 d^{5}} \] Input:

int(x^2*(d*x-c)^(1/2)*(d*x+c)^(1/2)*(b*x^2+a),x)
 

Output:

( - 6*sqrt(c + d*x)*sqrt( - c + d*x)*a*c**2*d**3*x + 12*sqrt(c + d*x)*sqrt 
( - c + d*x)*a*d**5*x**3 - 3*sqrt(c + d*x)*sqrt( - c + d*x)*b*c**4*d*x - 2 
*sqrt(c + d*x)*sqrt( - c + d*x)*b*c**2*d**3*x**3 + 8*sqrt(c + d*x)*sqrt( - 
 c + d*x)*b*d**5*x**5 - 12*log((sqrt( - c + d*x) + sqrt(c + d*x))/(sqrt(c) 
*sqrt(2)))*a*c**4*d**2 - 6*log((sqrt( - c + d*x) + sqrt(c + d*x))/(sqrt(c) 
*sqrt(2)))*b*c**6)/(48*d**5)