\(\int \frac {c+d x}{\sqrt {1+x^3}} \, dx\) [95]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 246 \[ \int \frac {c+d x}{\sqrt {1+x^3}} \, dx=\frac {2 d \sqrt {1+x^3}}{1+\sqrt {3}+x}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} d (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {2 \sqrt {2+\sqrt {3}} \left (c-\left (1-\sqrt {3}\right ) d\right ) (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \] Output:

2*d*(x^3+1)^(1/2)/(1+x+3^(1/2))-3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*d*(1+x)* 
((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*EllipticE((1+x-3^(1/2))/(1+x+3^(1/2)),I* 
3^(1/2)+2*I)/((1+x)/(1+x+3^(1/2))^2)^(1/2)/(x^3+1)^(1/2)+2/3*(1/2*6^(1/2)+ 
1/2*2^(1/2))*(c-(1-3^(1/2))*d)*(1+x)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*Ell 
ipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*3^(3/4)/((1+x)/(1+x+3^(1 
/2))^2)^(1/2)/(x^3+1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.17 \[ \int \frac {c+d x}{\sqrt {1+x^3}} \, dx=c x \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-x^3\right )+\frac {1}{2} d x^2 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},-x^3\right ) \] Input:

Integrate[(c + d*x)/Sqrt[1 + x^3],x]
 

Output:

c*x*Hypergeometric2F1[1/3, 1/2, 4/3, -x^3] + (d*x^2*Hypergeometric2F1[1/2, 
 2/3, 5/3, -x^3])/2
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2417, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x}{\sqrt {x^3+1}} \, dx\)

\(\Big \downarrow \) 2417

\(\displaystyle \left (c-\left (1-\sqrt {3}\right ) d\right ) \int \frac {1}{\sqrt {x^3+1}}dx+d \int \frac {x-\sqrt {3}+1}{\sqrt {x^3+1}}dx\)

\(\Big \downarrow \) 759

\(\displaystyle d \int \frac {x-\sqrt {3}+1}{\sqrt {x^3+1}}dx+\frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (c-\left (1-\sqrt {3}\right ) d\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (c-\left (1-\sqrt {3}\right ) d\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}+d \left (\frac {2 \sqrt {x^3+1}}{x+\sqrt {3}+1}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\right )\)

Input:

Int[(c + d*x)/Sqrt[1 + x^3],x]
 

Output:

d*((2*Sqrt[1 + x^3])/(1 + Sqrt[3] + x) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x 
)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + 
x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2] 
*Sqrt[1 + x^3])) + (2*Sqrt[2 + Sqrt[3]]*(c - (1 - Sqrt[3])*d)*(1 + x)*Sqrt 
[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 
+ Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^ 
2]*Sqrt[1 + x^3])
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 

rule 2417
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(c*r - (1 - Sqrt[3])*d*s)/r 
  Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r   Int[((1 - Sqrt[3])*s + r*x)/Sq 
rt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 
2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.21 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.13

method result size
meijerg \(\frac {d \,x^{2} \operatorname {hypergeom}\left (\left [\frac {1}{2}, \frac {2}{3}\right ], \left [\frac {5}{3}\right ], -x^{3}\right )}{2}+c x \operatorname {hypergeom}\left (\left [\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {4}{3}\right ], -x^{3}\right )\) \(33\)
default \(\frac {2 c \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}+\frac {2 d \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{\sqrt {x^{3}+1}}\) \(291\)
elliptic \(\frac {2 c \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}+\frac {2 d \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{\sqrt {x^{3}+1}}\) \(291\)

Input:

int((d*x+c)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2*d*x^2*hypergeom([1/2,2/3],[5/3],-x^3)+c*x*hypergeom([1/3,1/2],[4/3],-x 
^3)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.07 \[ \int \frac {c+d x}{\sqrt {1+x^3}} \, dx=2 \, c {\rm weierstrassPInverse}\left (0, -4, x\right ) - 2 \, d {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) \] Input:

integrate((d*x+c)/(x^3+1)^(1/2),x, algorithm="fricas")
 

Output:

2*c*weierstrassPInverse(0, -4, x) - 2*d*weierstrassZeta(0, -4, weierstrass 
PInverse(0, -4, x))
 

Sympy [A] (verification not implemented)

Time = 0.77 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.25 \[ \int \frac {c+d x}{\sqrt {1+x^3}} \, dx=\frac {c x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} + \frac {d x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {5}{3}\right )} \] Input:

integrate((d*x+c)/(x**3+1)**(1/2),x)
 

Output:

c*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(I*pi))/(3*gamma(4/ 
3)) + d*x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), x**3*exp_polar(I*pi))/(3 
*gamma(5/3))
 

Maxima [F]

\[ \int \frac {c+d x}{\sqrt {1+x^3}} \, dx=\int { \frac {d x + c}{\sqrt {x^{3} + 1}} \,d x } \] Input:

integrate((d*x+c)/(x^3+1)^(1/2),x, algorithm="maxima")
 

Output:

integrate((d*x + c)/sqrt(x^3 + 1), x)
 

Giac [F]

\[ \int \frac {c+d x}{\sqrt {1+x^3}} \, dx=\int { \frac {d x + c}{\sqrt {x^{3} + 1}} \,d x } \] Input:

integrate((d*x+c)/(x^3+1)^(1/2),x, algorithm="giac")
 

Output:

integrate((d*x + c)/sqrt(x^3 + 1), x)
 

Mupad [B] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 373, normalized size of antiderivative = 1.52 \[ \int \frac {c+d x}{\sqrt {1+x^3}} \, dx =\text {Too large to display} \] Input:

int((c + d*x)/(x^3 + 1)^(1/2),x)
 

Output:

(2*c*((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 
3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 
1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2 
 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(x^3 - x 
*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1 
/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2) - (2*d*(((3^(1/2)*1i)/2 - 1/2)*ellipticF 
(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3 
^(1/2)*1i)/2 - 3/2)) - ((3^(1/2)*1i)/2 - 3/2)*ellipticE(asin(((x + 1)/((3^ 
(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2) 
))*((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/ 
2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/ 
2)/((3^(1/2)*1i)/2 + 3/2))^(1/2))/(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/ 
2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2 
)
 

Reduce [F]

\[ \int \frac {c+d x}{\sqrt {1+x^3}} \, dx=\left (\int \frac {\sqrt {x^{3}+1}}{x^{3}+1}d x \right ) c +\left (\int \frac {\sqrt {x^{3}+1}\, x}{x^{3}+1}d x \right ) d \] Input:

int((d*x+c)/(x^3+1)^(1/2),x)
 

Output:

int(sqrt(x**3 + 1)/(x**3 + 1),x)*c + int((sqrt(x**3 + 1)*x)/(x**3 + 1),x)* 
d