\(\int \frac {a c+a d x+b c x^3+b d x^4}{(a+b x^3)^2} \, dx\) [48]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 161 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx=-\frac {\left (\sqrt [3]{b} c+\sqrt [3]{a} d\right ) \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} b^{2/3}}+\frac {\left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} b^{2/3}}-\frac {\left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} \sqrt [3]{b}} \] Output:

-1/3*(b^(1/3)*c+a^(1/3)*d)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)*3^(1/2)/a^(1/3 
))*3^(1/2)/a^(2/3)/b^(2/3)+1/3*(b^(1/3)*c-a^(1/3)*d)*ln(a^(1/3)+b^(1/3)*x) 
/a^(2/3)/b^(2/3)-1/6*(c-a^(1/3)*d/b^(1/3))*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^ 
(2/3)*x^2)/a^(2/3)/b^(1/3)
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.77 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx=\frac {-2 \sqrt {3} \left (\sqrt [3]{b} c+\sqrt [3]{a} d\right ) \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )+\left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) \left (2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )-\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )\right )}{6 a^{2/3} b^{2/3}} \] Input:

Integrate[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^2,x]
 

Output:

(-2*Sqrt[3]*(b^(1/3)*c + a^(1/3)*d)*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqr 
t[3]] + (b^(1/3)*c - a^(1/3)*d)*(2*Log[a^(1/3) + b^(1/3)*x] - Log[a^(2/3) 
- a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]))/(6*a^(2/3)*b^(2/3))
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.97, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {2019, 2399, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx\)

\(\Big \downarrow \) 2019

\(\displaystyle \int \frac {c+d x}{a+b x^3}dx\)

\(\Big \downarrow \) 2399

\(\displaystyle \frac {\int \frac {\sqrt [3]{a} \left (2 \sqrt [3]{b} c+\sqrt [3]{a} d\right )-\sqrt [3]{b} \left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3} \sqrt [3]{b}}+\frac {\left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 a^{2/3}}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\int \frac {\sqrt [3]{a} \left (2 \sqrt [3]{b} c+\sqrt [3]{a} d\right )-\sqrt [3]{b} \left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3} \sqrt [3]{b}}+\frac {\left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {3}{2} \sqrt [3]{a} \left (\sqrt [3]{a} d+\sqrt [3]{b} c\right ) \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {1}{2} \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3} \sqrt [3]{b}}+\frac {\left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {3}{2} \sqrt [3]{a} \left (\sqrt [3]{a} d+\sqrt [3]{b} c\right ) \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {1}{2} \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3} \sqrt [3]{b}}+\frac {\left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3}{2} \sqrt [3]{a} \left (\sqrt [3]{a} d+\sqrt [3]{b} c\right ) \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {1}{2} \sqrt [3]{b} \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3} \sqrt [3]{b}}+\frac {\left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {1}{2} \sqrt [3]{b} \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {3 \left (\sqrt [3]{a} d+\sqrt [3]{b} c\right ) \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3} \sqrt [3]{b}}+\frac {\left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {1}{2} \sqrt [3]{b} \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right ) \left (\sqrt [3]{a} d+\sqrt [3]{b} c\right )}{\sqrt [3]{b}}}{3 a^{2/3} \sqrt [3]{b}}+\frac {\left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {-\frac {1}{2} \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right ) \left (\sqrt [3]{a} d+\sqrt [3]{b} c\right )}{\sqrt [3]{b}}}{3 a^{2/3} \sqrt [3]{b}}+\frac {\left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

Input:

Int[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^2,x]
 

Output:

((c - (a^(1/3)*d)/b^(1/3))*Log[a^(1/3) + b^(1/3)*x])/(3*a^(2/3)*b^(1/3)) + 
 (-((Sqrt[3]*(b^(1/3)*c + a^(1/3)*d)*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sq 
rt[3]])/b^(1/3)) - ((c - (a^(1/3)*d)/b^(1/3))*Log[a^(2/3) - a^(1/3)*b^(1/3 
)*x + b^(2/3)*x^2])/2)/(3*a^(2/3)*b^(1/3))
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 2019
Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px 
, Qx, x]^p*Qx^(p + q), x] /; FreeQ[q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && 
 EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]
 

rule 2399
Int[((A_) + (B_.)*(x_))/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{r = Numer 
ator[Rt[a/b, 3]], s = Denominator[Rt[a/b, 3]]}, Simp[(-r)*((B*r - A*s)/(3*a 
*s))   Int[1/(r + s*x), x], x] + Simp[r/(3*a*s)   Int[(r*(B*r + 2*A*s) + s* 
(B*r - A*s)*x)/(r^2 - r*s*x + s^2*x^2), x], x]] /; FreeQ[{a, b, A, B}, x] & 
& NeQ[a*B^3 - b*A^3, 0] && PosQ[a/b]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.10 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.20

method result size
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{3} b +a \right )}{\sum }\frac {\left (d \textit {\_R} +c \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{2}}}{3 b}\) \(32\)
default \(c \left (\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right )+d \left (-\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )\) \(186\)

Input:

int((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^2,x,method=_RETURNVERBOSE)
 

Output:

1/3/b*sum((_R*d+c)/_R^2*ln(x-_R),_R=RootOf(_Z^3*b+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.84 (sec) , antiderivative size = 1931, normalized size of antiderivative = 11.99 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx=\text {Too large to display} \] Input:

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^2,x, algorithm="fricas")
 

Output:

-1/6*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a* 
d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + 
a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))*log(1/4*((1/2)^(1/3) 
*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^( 
1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) 
+ (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))^2*a^2*b*d - 1/2*((1/2)^(1/3)*(I*sqrt( 
3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2* 
(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 
- a*d^3)/(a^2*b^2))^(1/3)))*a*b*c^2 + 2*a*c*d^2 + (b*c^3 + a*d^3)*x) + 1/1 
2*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3 
)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d 
^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)) + 3*sqrt(1/3)*sqrt(-(((1 
/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^ 
2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/( 
a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))^2*a*b + 16*c*d)/(a*b)))*log( 
-1/4*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a* 
d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + 
a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))^2*a^2*b*d + 1/2*((1/ 
2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2 
*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)...
 

Sympy [A] (verification not implemented)

Time = 0.49 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.47 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx=\operatorname {RootSum} {\left (27 t^{3} a^{2} b^{2} + 9 t a b c d + a d^{3} - b c^{3}, \left ( t \mapsto t \log {\left (x + \frac {9 t^{2} a^{2} b d + 3 t a b c^{2} + 2 a c d^{2}}{a d^{3} + b c^{3}} \right )} \right )\right )} \] Input:

integrate((b*d*x**4+b*c*x**3+a*d*x+a*c)/(b*x**3+a)**2,x)
 

Output:

RootSum(27*_t**3*a**2*b**2 + 9*_t*a*b*c*d + a*d**3 - b*c**3, Lambda(_t, _t 
*log(x + (9*_t**2*a**2*b*d + 3*_t*a*b*c**2 + 2*a*c*d**2)/(a*d**3 + b*c**3) 
)))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.84 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx=\frac {\sqrt {3} {\left (d \left (\frac {a}{b}\right )^{\frac {1}{3}} + c\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, b \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {{\left (d \left (\frac {a}{b}\right )^{\frac {1}{3}} - c\right )} \log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, b \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {{\left (d \left (\frac {a}{b}\right )^{\frac {1}{3}} - c\right )} \log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, b \left (\frac {a}{b}\right )^{\frac {2}{3}}} \] Input:

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^2,x, algorithm="maxima")
 

Output:

1/3*sqrt(3)*(d*(a/b)^(1/3) + c)*arctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/ 
b)^(1/3))/(b*(a/b)^(2/3)) + 1/6*(d*(a/b)^(1/3) - c)*log(x^2 - x*(a/b)^(1/3 
) + (a/b)^(2/3))/(b*(a/b)^(2/3)) - 1/3*(d*(a/b)^(1/3) - c)*log(x + (a/b)^( 
1/3))/(b*(a/b)^(2/3))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.88 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx=-\frac {\sqrt {3} {\left (b c - \left (-a b^{2}\right )^{\frac {1}{3}} d\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, \left (-a b^{2}\right )^{\frac {2}{3}}} - \frac {{\left (b c + \left (-a b^{2}\right )^{\frac {1}{3}} d\right )} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, \left (-a b^{2}\right )^{\frac {2}{3}}} - \frac {{\left (d \left (-\frac {a}{b}\right )^{\frac {1}{3}} + c\right )} \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a} \] Input:

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^2,x, algorithm="giac")
 

Output:

-1/3*sqrt(3)*(b*c - (-a*b^2)^(1/3)*d)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/ 
3))/(-a/b)^(1/3))/(-a*b^2)^(2/3) - 1/6*(b*c + (-a*b^2)^(1/3)*d)*log(x^2 + 
x*(-a/b)^(1/3) + (-a/b)^(2/3))/(-a*b^2)^(2/3) - 1/3*(d*(-a/b)^(1/3) + c)*( 
-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/a
 

Mupad [B] (verification not implemented)

Time = 5.94 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.79 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx=\sum _{k=1}^3\ln \left (b\,\left (c\,d+d^2\,x+{\mathrm {root}\left (27\,a^2\,b^2\,z^3+9\,a\,b\,c\,d\,z+a\,d^3-b\,c^3,z,k\right )}^2\,a\,b\,9+\mathrm {root}\left (27\,a^2\,b^2\,z^3+9\,a\,b\,c\,d\,z+a\,d^3-b\,c^3,z,k\right )\,b\,c\,x\,3\right )\right )\,\mathrm {root}\left (27\,a^2\,b^2\,z^3+9\,a\,b\,c\,d\,z+a\,d^3-b\,c^3,z,k\right ) \] Input:

int((a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^2,x)
 

Output:

symsum(log(b*(c*d + d^2*x + 9*root(27*a^2*b^2*z^3 + 9*a*b*c*d*z + a*d^3 - 
b*c^3, z, k)^2*a*b + 3*root(27*a^2*b^2*z^3 + 9*a*b*c*d*z + a*d^3 - b*c^3, 
z, k)*b*c*x))*root(27*a^2*b^2*z^3 + 9*a*b*c*d*z + a*d^3 - b*c^3, z, k), k, 
 1, 3)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.94 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx=\frac {-2 b^{\frac {1}{3}} a^{\frac {2}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) c -2 \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} x}{a^{\frac {1}{3}} \sqrt {3}}\right ) a d -b^{\frac {1}{3}} a^{\frac {2}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) c +2 b^{\frac {1}{3}} a^{\frac {2}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) c +\mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} x +b^{\frac {2}{3}} x^{2}\right ) a d -2 \,\mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} x \right ) a d}{6 b^{\frac {2}{3}} a^{\frac {4}{3}}} \] Input:

int((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^2,x)
 

Output:

( - 2*b**(1/3)*a**(2/3)*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*s 
qrt(3)))*c - 2*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*x)/(a**(1/3)*sqrt(3)))* 
a*d - b**(1/3)*a**(2/3)*log(a**(2/3) - b**(1/3)*a**(1/3)*x + b**(2/3)*x**2 
)*c + 2*b**(1/3)*a**(2/3)*log(a**(1/3) + b**(1/3)*x)*c + log(a**(2/3) - b* 
*(1/3)*a**(1/3)*x + b**(2/3)*x**2)*a*d - 2*log(a**(1/3) + b**(1/3)*x)*a*d) 
/(6*b**(2/3)*a**(1/3)*a)