\(\int \sqrt {a+b x^3} (a c+a d x+b c x^3+b d x^4) \, dx\) [53]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 556 \[ \int \sqrt {a+b x^3} \left (a c+a d x+b c x^3+b d x^4\right ) \, dx=\frac {54 a^2 d \sqrt {a+b x^3}}{91 b^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {18 a \left (91 c x+55 d x^2\right ) \sqrt {a+b x^3}}{5005}+\frac {2}{143} \left (13 c x+11 d x^2\right ) \left (a+b x^3\right )^{3/2}-\frac {27 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^{7/3} d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{91 b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {18\ 3^{3/4} \sqrt {2+\sqrt {3}} a^2 \left (91 \sqrt [3]{b} c-55 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{5005 b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

54/91*a^2*d*(b*x^3+a)^(1/2)/b^(2/3)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)+18/500 
5*a*(55*d*x^2+91*c*x)*(b*x^3+a)^(1/2)+2/143*(11*d*x^2+13*c*x)*(b*x^3+a)^(3 
/2)-27/91*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*a^(7/3)*d*(a^(1/3)+b^(1/3)*x)* 
((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2 
)^(1/2)*EllipticE(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^( 
1/3)*x),I*3^(1/2)+2*I)/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a 
^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)+18/5005*3^(3/4)*(1/2*6^(1/2)+1/ 
2*2^(1/2))*a^2*(91*b^(1/3)*c-55*(1-3^(1/2))*a^(1/3)*d)*(a^(1/3)+b^(1/3)*x) 
*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^ 
2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^ 
(1/3)*x),I*3^(1/2)+2*I)/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))* 
a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.79 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.14 \[ \int \sqrt {a+b x^3} \left (a c+a d x+b c x^3+b d x^4\right ) \, dx=\frac {a x \sqrt {a+b x^3} \left (2 c \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {1}{3},\frac {4}{3},-\frac {b x^3}{a}\right )+d x \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {2}{3},\frac {5}{3},-\frac {b x^3}{a}\right )\right )}{2 \sqrt {1+\frac {b x^3}{a}}} \] Input:

Integrate[Sqrt[a + b*x^3]*(a*c + a*d*x + b*c*x^3 + b*d*x^4),x]
 

Output:

(a*x*Sqrt[a + b*x^3]*(2*c*Hypergeometric2F1[-3/2, 1/3, 4/3, -((b*x^3)/a)] 
+ d*x*Hypergeometric2F1[-3/2, 2/3, 5/3, -((b*x^3)/a)]))/(2*Sqrt[1 + (b*x^3 
)/a])
 

Rubi [A] (verified)

Time = 1.16 (sec) , antiderivative size = 562, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2391, 2392, 27, 2392, 27, 2417, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a+b x^3} \left (a c+a d x+b c x^3+b d x^4\right ) \, dx\)

\(\Big \downarrow \) 2391

\(\displaystyle \int \left (a+b x^3\right )^{3/2} (c+d x)dx\)

\(\Big \downarrow \) 2392

\(\displaystyle \frac {9}{2} a \int \frac {2}{143} (13 c+11 d x) \sqrt {b x^3+a}dx+\frac {2}{143} \left (a+b x^3\right )^{3/2} \left (13 c x+11 d x^2\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {9}{143} a \int (13 c+11 d x) \sqrt {b x^3+a}dx+\frac {2}{143} \left (a+b x^3\right )^{3/2} \left (13 c x+11 d x^2\right )\)

\(\Big \downarrow \) 2392

\(\displaystyle \frac {9}{143} a \left (\frac {3}{2} a \int \frac {2 (91 c+55 d x)}{35 \sqrt {b x^3+a}}dx+\frac {2}{35} \sqrt {a+b x^3} \left (91 c x+55 d x^2\right )\right )+\frac {2}{143} \left (a+b x^3\right )^{3/2} \left (13 c x+11 d x^2\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {9}{143} a \left (\frac {3}{35} a \int \frac {91 c+55 d x}{\sqrt {b x^3+a}}dx+\frac {2}{35} \sqrt {a+b x^3} \left (91 c x+55 d x^2\right )\right )+\frac {2}{143} \left (a+b x^3\right )^{3/2} \left (13 c x+11 d x^2\right )\)

\(\Big \downarrow \) 2417

\(\displaystyle \frac {9}{143} a \left (\frac {3}{35} a \left (\left (91 c-\frac {55 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \int \frac {1}{\sqrt {b x^3+a}}dx+\frac {55 d \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}\right )+\frac {2}{35} \sqrt {a+b x^3} \left (91 c x+55 d x^2\right )\right )+\frac {2}{143} \left (a+b x^3\right )^{3/2} \left (13 c x+11 d x^2\right )\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {9}{143} a \left (\frac {3}{35} a \left (\frac {55 d \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}+\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (91 c-\frac {55 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )+\frac {2}{35} \sqrt {a+b x^3} \left (91 c x+55 d x^2\right )\right )+\frac {2}{143} \left (a+b x^3\right )^{3/2} \left (13 c x+11 d x^2\right )\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {9}{143} a \left (\frac {3}{35} a \left (\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (91 c-\frac {55 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {55 d \left (\frac {2 \sqrt {a+b x^3}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{\sqrt [3]{b}}\right )+\frac {2}{35} \sqrt {a+b x^3} \left (91 c x+55 d x^2\right )\right )+\frac {2}{143} \left (a+b x^3\right )^{3/2} \left (13 c x+11 d x^2\right )\)

Input:

Int[Sqrt[a + b*x^3]*(a*c + a*d*x + b*c*x^3 + b*d*x^4),x]
 

Output:

(2*(13*c*x + 11*d*x^2)*(a + b*x^3)^(3/2))/143 + (9*a*((2*(91*c*x + 55*d*x^ 
2)*Sqrt[a + b*x^3])/35 + (3*a*((55*d*((2*Sqrt[a + b*x^3])/(b^(1/3)*((1 + S 
qrt[3])*a^(1/3) + b^(1/3)*x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3)*(a^(1/3 
) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt 
[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^( 
1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(b^(1/3)*Sq 
rt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]* 
Sqrt[a + b*x^3])))/b^(1/3) + (2*Sqrt[2 + Sqrt[3]]*(91*c - (55*(1 - Sqrt[3] 
)*a^(1/3)*d)/b^(1/3))*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3 
)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin 
[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], 
 -7 - 4*Sqrt[3]])/(3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/(( 
1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])))/35))/143
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2391
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[PolynomialQuoti 
ent[Pq, a + b*x^n, x]*(a + b*x^n)^(p + 1), x] /; FreeQ[{a, b, p}, x] && Pol 
yQ[Pq, x] && IGtQ[n, 0] && GeQ[Expon[Pq, x], n] && EqQ[PolynomialRemainder[ 
Pq, a + b*x^n, x], 0]
 

rule 2392
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{q = Expon[Pq 
, x], i}, Simp[(a + b*x^n)^p*Sum[Coeff[Pq, x, i]*(x^(i + 1)/(n*p + i + 1)), 
 {i, 0, q}], x] + Simp[a*n*p   Int[(a + b*x^n)^(p - 1)*Sum[Coeff[Pq, x, i]* 
(x^i/(n*p + i + 1)), {i, 0, q}], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x 
] && IGtQ[(n - 1)/2, 0] && GtQ[p, 0]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 

rule 2417
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(c*r - (1 - Sqrt[3])*d*s)/r 
  Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r   Int[((1 - Sqrt[3])*s + r*x)/Sq 
rt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 
2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 0.66 (sec) , antiderivative size = 762, normalized size of antiderivative = 1.37

method result size
risch \(\text {Expression too large to display}\) \(762\)
elliptic \(\text {Expression too large to display}\) \(788\)
default \(\text {Expression too large to display}\) \(1546\)

Input:

int((b*x^3+a)^(1/2)*(b*d*x^4+b*c*x^3+a*d*x+a*c),x,method=_RETURNVERBOSE)
 

Output:

2/5005*x*(385*b*d*x^4+455*b*c*x^3+880*a*d*x+1274*a*c)*(b*x^3+a)^(1/2)+27/5 
005*a^2*(-182/3*I*c*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/ 
2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a* 
b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)* 
(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a* 
b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^ 
2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),( 
I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2) 
^(1/3)))^(1/2))-110/3*I*d*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1 
/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/ 
b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^ 
(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)* 
b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1 
/2)/b*(-a*b^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2 
*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b* 
(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/ 
2))+1/b*(-a*b^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/ 
2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b 
*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1 
/2))))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.17 \[ \int \sqrt {a+b x^3} \left (a c+a d x+b c x^3+b d x^4\right ) \, dx=\frac {2 \, {\left (2457 \, a^{2} \sqrt {b} c {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) - 1485 \, a^{2} \sqrt {b} d {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right ) + {\left (385 \, b^{2} d x^{5} + 455 \, b^{2} c x^{4} + 880 \, a b d x^{2} + 1274 \, a b c x\right )} \sqrt {b x^{3} + a}\right )}}{5005 \, b} \] Input:

integrate((b*x^3+a)^(1/2)*(b*d*x^4+b*c*x^3+a*d*x+a*c),x, algorithm="fricas 
")
 

Output:

2/5005*(2457*a^2*sqrt(b)*c*weierstrassPInverse(0, -4*a/b, x) - 1485*a^2*sq 
rt(b)*d*weierstrassZeta(0, -4*a/b, weierstrassPInverse(0, -4*a/b, x)) + (3 
85*b^2*d*x^5 + 455*b^2*c*x^4 + 880*a*b*d*x^2 + 1274*a*b*c*x)*sqrt(b*x^3 + 
a))/b
 

Sympy [A] (verification not implemented)

Time = 2.83 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.31 \[ \int \sqrt {a+b x^3} \left (a c+a d x+b c x^3+b d x^4\right ) \, dx=\frac {a^{\frac {3}{2}} c x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{3} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} + \frac {a^{\frac {3}{2}} d x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {5}{3}\right )} + \frac {\sqrt {a} b c x^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {4}{3} \\ \frac {7}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {7}{3}\right )} + \frac {\sqrt {a} b d x^{5} \Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {5}{3} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {8}{3}\right )} \] Input:

integrate((b*x**3+a)**(1/2)*(b*d*x**4+b*c*x**3+a*d*x+a*c),x)
 

Output:

a**(3/2)*c*x*gamma(1/3)*hyper((-1/2, 1/3), (4/3,), b*x**3*exp_polar(I*pi)/ 
a)/(3*gamma(4/3)) + a**(3/2)*d*x**2*gamma(2/3)*hyper((-1/2, 2/3), (5/3,), 
b*x**3*exp_polar(I*pi)/a)/(3*gamma(5/3)) + sqrt(a)*b*c*x**4*gamma(4/3)*hyp 
er((-1/2, 4/3), (7/3,), b*x**3*exp_polar(I*pi)/a)/(3*gamma(7/3)) + sqrt(a) 
*b*d*x**5*gamma(5/3)*hyper((-1/2, 5/3), (8/3,), b*x**3*exp_polar(I*pi)/a)/ 
(3*gamma(8/3))
 

Maxima [F]

\[ \int \sqrt {a+b x^3} \left (a c+a d x+b c x^3+b d x^4\right ) \, dx=\int { {\left (b d x^{4} + b c x^{3} + a d x + a c\right )} \sqrt {b x^{3} + a} \,d x } \] Input:

integrate((b*x^3+a)^(1/2)*(b*d*x^4+b*c*x^3+a*d*x+a*c),x, algorithm="maxima 
")
 

Output:

integrate((b*d*x^4 + b*c*x^3 + a*d*x + a*c)*sqrt(b*x^3 + a), x)
 

Giac [F]

\[ \int \sqrt {a+b x^3} \left (a c+a d x+b c x^3+b d x^4\right ) \, dx=\int { {\left (b d x^{4} + b c x^{3} + a d x + a c\right )} \sqrt {b x^{3} + a} \,d x } \] Input:

integrate((b*x^3+a)^(1/2)*(b*d*x^4+b*c*x^3+a*d*x+a*c),x, algorithm="giac")
 

Output:

integrate((b*d*x^4 + b*c*x^3 + a*d*x + a*c)*sqrt(b*x^3 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b x^3} \left (a c+a d x+b c x^3+b d x^4\right ) \, dx=\int \sqrt {b\,x^3+a}\,\left (b\,d\,x^4+b\,c\,x^3+a\,d\,x+a\,c\right ) \,d x \] Input:

int((a + b*x^3)^(1/2)*(a*c + a*d*x + b*c*x^3 + b*d*x^4),x)
 

Output:

int((a + b*x^3)^(1/2)*(a*c + a*d*x + b*c*x^3 + b*d*x^4), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \sqrt {a+b x^3} \left (a c+a d x+b c x^3+b d x^4\right ) \, dx=\frac {28 \sqrt {b \,x^{3}+a}\, a c x}{55}+\frac {32 \sqrt {b \,x^{3}+a}\, a d \,x^{2}}{91}+\frac {2 \sqrt {b \,x^{3}+a}\, b c \,x^{4}}{11}+\frac {2 \sqrt {b \,x^{3}+a}\, b d \,x^{5}}{13}+\frac {27 \left (\int \frac {\sqrt {b \,x^{3}+a}}{b \,x^{3}+a}d x \right ) a^{2} c}{55}+\frac {27 \left (\int \frac {\sqrt {b \,x^{3}+a}\, x}{b \,x^{3}+a}d x \right ) a^{2} d}{91} \] Input:

int((b*x^3+a)^(1/2)*(b*d*x^4+b*c*x^3+a*d*x+a*c),x)
 

Output:

(2548*sqrt(a + b*x**3)*a*c*x + 1760*sqrt(a + b*x**3)*a*d*x**2 + 910*sqrt(a 
 + b*x**3)*b*c*x**4 + 770*sqrt(a + b*x**3)*b*d*x**5 + 2457*int(sqrt(a + b* 
x**3)/(a + b*x**3),x)*a**2*c + 1485*int((sqrt(a + b*x**3)*x)/(a + b*x**3), 
x)*a**2*d)/5005