\(\int \frac {1+\sqrt {3}+\sqrt [3]{\frac {b}{a}} x}{\sqrt {a+b x^3}} \, dx\) [71]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 520 \[ \int \frac {1+\sqrt {3}+\sqrt [3]{\frac {b}{a}} x}{\sqrt {a+b x^3}} \, dx=\frac {2 \sqrt [3]{\frac {b}{a}} \sqrt {a+b x^3}}{b^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \sqrt [3]{\frac {b}{a}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2 \sqrt {2+\sqrt {3}} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{b}-\left (1-\sqrt {3}\right ) \sqrt [3]{a} \sqrt [3]{\frac {b}{a}}\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

2*(b/a)^(1/3)*(b*x^3+a)^(1/2)/b^(2/3)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)-3^(1 
/4)*(1/2*6^(1/2)-1/2*2^(1/2))*a^(1/3)*(b/a)^(1/3)*(a^(1/3)+b^(1/3)*x)*((a^ 
(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1 
/2)*EllipticE(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3) 
*x),I*3^(1/2)+2*I)/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/ 
3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)+2/3*(1/2*6^(1/2)+1/2*2^(1/2))*((1+3 
^(1/2))*b^(1/3)-(1-3^(1/2))*a^(1/3)*(b/a)^(1/3))*(a^(1/3)+b^(1/3)*x)*((a^( 
2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/ 
2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)* 
x),I*3^(1/2)+2*I)*3^(3/4)/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2) 
)*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.05 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.17 \[ \int \frac {1+\sqrt {3}+\sqrt [3]{\frac {b}{a}} x}{\sqrt {a+b x^3}} \, dx=\frac {x \sqrt {1+\frac {b x^3}{a}} \left (2 \left (1+\sqrt {3}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a}\right )+\sqrt [3]{\frac {b}{a}} x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},-\frac {b x^3}{a}\right )\right )}{2 \sqrt {a+b x^3}} \] Input:

Integrate[(1 + Sqrt[3] + (b/a)^(1/3)*x)/Sqrt[a + b*x^3],x]
 

Output:

(x*Sqrt[1 + (b*x^3)/a]*(2*(1 + Sqrt[3])*Hypergeometric2F1[1/3, 1/2, 4/3, - 
((b*x^3)/a)] + (b/a)^(1/3)*x*Hypergeometric2F1[1/2, 2/3, 5/3, -((b*x^3)/a) 
]))/(2*Sqrt[a + b*x^3])
 

Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 516, normalized size of antiderivative = 0.99, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2417, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sqrt [3]{\frac {b}{a}}+\sqrt {3}+1}{\sqrt {a+b x^3}} \, dx\)

\(\Big \downarrow \) 2417

\(\displaystyle \left (-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \sqrt [3]{\frac {b}{a}}}{\sqrt [3]{b}}+\sqrt {3}+1\right ) \int \frac {1}{\sqrt {b x^3+a}}dx+\frac {\sqrt [3]{\frac {b}{a}} \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\sqrt [3]{\frac {b}{a}} \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}+\frac {2 \sqrt {2+\sqrt {3}} \left (-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \sqrt [3]{\frac {b}{a}}}{\sqrt [3]{b}}+\sqrt {3}+1\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} \left (-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \sqrt [3]{\frac {b}{a}}}{\sqrt [3]{b}}+\sqrt {3}+1\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {\sqrt [3]{\frac {b}{a}} \left (\frac {2 \sqrt {a+b x^3}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{\sqrt [3]{b}}\)

Input:

Int[(1 + Sqrt[3] + (b/a)^(1/3)*x)/Sqrt[a + b*x^3],x]
 

Output:

((b/a)^(1/3)*((2*Sqrt[a + b*x^3])/(b^(1/3)*((1 + Sqrt[3])*a^(1/3) + b^(1/3 
)*x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^( 
2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x 
)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a 
^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b 
^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])))/b^(1/ 
3) + (2*Sqrt[2 + Sqrt[3]]*(1 + Sqrt[3] - ((1 - Sqrt[3])*a^(1/3)*(b/a)^(1/3 
))/b^(1/3))*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2 
/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqr 
t[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sq 
rt[3]])/(3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3 
])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 

rule 2417
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(c*r - (1 - Sqrt[3])*d*s)/r 
  Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r   Int[((1 - Sqrt[3])*s + r*x)/Sq 
rt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 
2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1003 vs. \(2 (386 ) = 772\).

Time = 0.56 (sec) , antiderivative size = 1004, normalized size of antiderivative = 1.93

method result size
default \(\text {Expression too large to display}\) \(1004\)

Input:

int((1+3^(1/2)+(b/a)^(1/3)*x)/(b*x^3+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/3*I*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/( 
-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b* 
(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^( 
1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2* 
I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*( 
-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2 
))-2*I/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2 
)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*( 
-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2) 
^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b* 
x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2 
)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^ 
(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))-2/3*I 
*(b/a)^(1/3)*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^( 
1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1 
/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+ 
1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1 
/3))^(1/2)/(b*x^3+a)^(1/2)*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2 
)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)...
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.10 \[ \int \frac {1+\sqrt {3}+\sqrt [3]{\frac {b}{a}} x}{\sqrt {a+b x^3}} \, dx=\frac {2 \, {\left (\sqrt {b} {\left (\sqrt {3} + 1\right )} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) - \sqrt {b} \left (\frac {b}{a}\right )^{\frac {1}{3}} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right )\right )}}{b} \] Input:

integrate((1+3^(1/2)+(b/a)^(1/3)*x)/(b*x^3+a)^(1/2),x, algorithm="fricas")
 

Output:

2*(sqrt(b)*(sqrt(3) + 1)*weierstrassPInverse(0, -4*a/b, x) - sqrt(b)*(b/a) 
^(1/3)*weierstrassZeta(0, -4*a/b, weierstrassPInverse(0, -4*a/b, x)))/b
 

Sympy [A] (verification not implemented)

Time = 1.50 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.24 \[ \int \frac {1+\sqrt {3}+\sqrt [3]{\frac {b}{a}} x}{\sqrt {a+b x^3}} \, dx=\frac {x^{2} \sqrt [3]{\frac {b}{a}} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} \Gamma \left (\frac {5}{3}\right )} + \frac {x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} \Gamma \left (\frac {4}{3}\right )} + \frac {\sqrt {3} x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} \Gamma \left (\frac {4}{3}\right )} \] Input:

integrate((1+3**(1/2)+(b/a)**(1/3)*x)/(b*x**3+a)**(1/2),x)
 

Output:

x**2*(b/a)**(1/3)*gamma(2/3)*hyper((1/2, 2/3), (5/3,), b*x**3*exp_polar(I* 
pi)/a)/(3*sqrt(a)*gamma(5/3)) + x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), b*x 
**3*exp_polar(I*pi)/a)/(3*sqrt(a)*gamma(4/3)) + sqrt(3)*x*gamma(1/3)*hyper 
((1/3, 1/2), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*sqrt(a)*gamma(4/3))
 

Maxima [F]

\[ \int \frac {1+\sqrt {3}+\sqrt [3]{\frac {b}{a}} x}{\sqrt {a+b x^3}} \, dx=\int { \frac {x \left (\frac {b}{a}\right )^{\frac {1}{3}} + \sqrt {3} + 1}{\sqrt {b x^{3} + a}} \,d x } \] Input:

integrate((1+3^(1/2)+(b/a)^(1/3)*x)/(b*x^3+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate((x*(b/a)^(1/3) + sqrt(3) + 1)/sqrt(b*x^3 + a), x)
 

Giac [F]

\[ \int \frac {1+\sqrt {3}+\sqrt [3]{\frac {b}{a}} x}{\sqrt {a+b x^3}} \, dx=\int { \frac {x \left (\frac {b}{a}\right )^{\frac {1}{3}} + \sqrt {3} + 1}{\sqrt {b x^{3} + a}} \,d x } \] Input:

integrate((1+3^(1/2)+(b/a)^(1/3)*x)/(b*x^3+a)^(1/2),x, algorithm="giac")
 

Output:

integrate((x*(b/a)^(1/3) + sqrt(3) + 1)/sqrt(b*x^3 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1+\sqrt {3}+\sqrt [3]{\frac {b}{a}} x}{\sqrt {a+b x^3}} \, dx=\int \frac {\sqrt {3}+x\,{\left (\frac {b}{a}\right )}^{1/3}+1}{\sqrt {b\,x^3+a}} \,d x \] Input:

int((3^(1/2) + x*(b/a)^(1/3) + 1)/(a + b*x^3)^(1/2),x)
 

Output:

int((3^(1/2) + x*(b/a)^(1/3) + 1)/(a + b*x^3)^(1/2), x)
 

Reduce [F]

\[ \int \frac {1+\sqrt {3}+\sqrt [3]{\frac {b}{a}} x}{\sqrt {a+b x^3}} \, dx=\frac {a^{\frac {1}{3}} \sqrt {3}\, \left (\int \frac {\sqrt {b \,x^{3}+a}}{b \,x^{3}+a}d x \right )+a^{\frac {1}{3}} \left (\int \frac {\sqrt {b \,x^{3}+a}}{b \,x^{3}+a}d x \right )+b^{\frac {1}{3}} \left (\int \frac {\sqrt {b \,x^{3}+a}\, x}{b \,x^{3}+a}d x \right )}{a^{\frac {1}{3}}} \] Input:

int((1+3^(1/2)+(b/a)^(1/3)*x)/(b*x^3+a)^(1/2),x)
                                                                                    
                                                                                    
 

Output:

(a**(1/3)*sqrt(3)*int(sqrt(a + b*x**3)/(a + b*x**3),x) + a**(1/3)*int(sqrt 
(a + b*x**3)/(a + b*x**3),x) + b**(1/3)*int((sqrt(a + b*x**3)*x)/(a + b*x* 
*3),x))/a**(1/3)