\(\int \frac {c+d x+e x^2}{a+b x^4} \, dx\) [48]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 210 \[ \int \frac {c+d x+e x^2}{a+b x^4} \, dx=\frac {d \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {b}}-\frac {\left (\sqrt {b} c+\sqrt {a} e\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c+\sqrt {a} e\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c-\sqrt {a} e\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x}{\sqrt {a}+\sqrt {b} x^2}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}} \] Output:

1/2*d*arctan(b^(1/2)*x^2/a^(1/2))/a^(1/2)/b^(1/2)+1/4*(b^(1/2)*c+a^(1/2)*e 
)*arctan(-1+2^(1/2)*b^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/b^(3/4)+1/4*(b^(1/2 
)*c+a^(1/2)*e)*arctan(1+2^(1/2)*b^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/b^(3/4) 
+1/4*(b^(1/2)*c-a^(1/2)*e)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*x/(a^(1/2)+b^(1 
/2)*x^2))*2^(1/2)/a^(3/4)/b^(3/4)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.09 \[ \int \frac {c+d x+e x^2}{a+b x^4} \, dx=\frac {-2 \left (\sqrt {2} \sqrt {b} c+2 \sqrt [4]{a} \sqrt [4]{b} d+\sqrt {2} \sqrt {a} e\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt {2} \sqrt {b} c-2 \sqrt [4]{a} \sqrt [4]{b} d+\sqrt {2} \sqrt {a} e\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )-\sqrt {2} \left (\sqrt {b} c-\sqrt {a} e\right ) \left (\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )-\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )\right )}{8 a^{3/4} b^{3/4}} \] Input:

Integrate[(c + d*x + e*x^2)/(a + b*x^4),x]
 

Output:

(-2*(Sqrt[2]*Sqrt[b]*c + 2*a^(1/4)*b^(1/4)*d + Sqrt[2]*Sqrt[a]*e)*ArcTan[1 
 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)] + 2*(Sqrt[2]*Sqrt[b]*c - 2*a^(1/4)*b^(1/4) 
*d + Sqrt[2]*Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)] - Sqrt[2]* 
(Sqrt[b]*c - Sqrt[a]*e)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b] 
*x^2] - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2]))/(8*a^(3/4 
)*b^(3/4))
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.32, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2415, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x+e x^2}{a+b x^4} \, dx\)

\(\Big \downarrow \) 2415

\(\displaystyle \int \left (\frac {c+e x^2}{a+b x^4}+\frac {d x}{a+b x^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right ) \left (\sqrt {a} e+\sqrt {b} c\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right ) \left (\sqrt {a} e+\sqrt {b} c\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\left (\sqrt {b} c-\sqrt {a} e\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c-\sqrt {a} e\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {d \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {b}}\)

Input:

Int[(c + d*x + e*x^2)/(a + b*x^4),x]
 

Output:

(d*ArcTan[(Sqrt[b]*x^2)/Sqrt[a]])/(2*Sqrt[a]*Sqrt[b]) - ((Sqrt[b]*c + Sqrt 
[a]*e)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(3/4) 
) + ((Sqrt[b]*c + Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2*S 
qrt[2]*a^(3/4)*b^(3/4)) - ((Sqrt[b]*c - Sqrt[a]*e)*Log[Sqrt[a] - Sqrt[2]*a 
^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*c 
 - Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*S 
qrt[2]*a^(3/4)*b^(3/4))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2415
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff 
[Pq, x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1 
}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n/2, 
 0] && Expon[Pq, x] < n
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.12 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.18

method result size
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (\textit {\_R}^{2} e +d \textit {\_R} +c \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 b}\) \(37\)
default \(\frac {c \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 a}+\frac {d \arctan \left (x^{2} \sqrt {\frac {b}{a}}\right )}{2 \sqrt {a b}}+\frac {e \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(226\)

Input:

int((e*x^2+d*x+c)/(b*x^4+a),x,method=_RETURNVERBOSE)
 

Output:

1/4/b*sum((_R^2*e+_R*d+c)/_R^3*ln(x-_R),_R=RootOf(_Z^4*b+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.60 (sec) , antiderivative size = 121386, normalized size of antiderivative = 578.03 \[ \int \frac {c+d x+e x^2}{a+b x^4} \, dx=\text {Too large to display} \] Input:

integrate((e*x^2+d*x+c)/(b*x^4+a),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 466 vs. \(2 (197) = 394\).

Time = 4.50 (sec) , antiderivative size = 466, normalized size of antiderivative = 2.22 \[ \int \frac {c+d x+e x^2}{a+b x^4} \, dx=\operatorname {RootSum} {\left (256 t^{4} a^{3} b^{3} + t^{2} \cdot \left (64 a^{2} b^{2} c e + 32 a^{2} b^{2} d^{2}\right ) + t \left (16 a^{2} b d e^{2} - 16 a b^{2} c^{2} d\right ) + a^{2} e^{4} + 2 a b c^{2} e^{2} - 4 a b c d^{2} e + a b d^{4} + b^{2} c^{4}, \left ( t \mapsto t \log {\left (x + \frac {64 t^{3} a^{4} b^{2} e^{3} - 64 t^{3} a^{3} b^{3} c^{2} e + 128 t^{3} a^{3} b^{3} c d^{2} + 48 t^{2} a^{3} b^{2} c d e^{2} - 32 t^{2} a^{3} b^{2} d^{3} e + 16 t^{2} a^{2} b^{3} c^{3} d + 12 t a^{3} b c e^{4} + 12 t a^{3} b d^{2} e^{3} - 16 t a^{2} b^{2} c^{3} e^{2} + 36 t a^{2} b^{2} c^{2} d^{2} e + 8 t a^{2} b^{2} c d^{4} + 4 t a b^{3} c^{5} + 3 a^{3} d e^{5} + 5 a^{2} b c d^{3} e^{2} - 2 a^{2} b d^{5} e + 5 a b^{2} c^{4} d e - 5 a b^{2} c^{3} d^{3}}{a^{3} e^{6} - a^{2} b c^{2} e^{4} + 8 a^{2} b c d^{2} e^{3} - 4 a^{2} b d^{4} e^{2} - a b^{2} c^{4} e^{2} + 8 a b^{2} c^{3} d^{2} e - 4 a b^{2} c^{2} d^{4} + b^{3} c^{6}} \right )} \right )\right )} \] Input:

integrate((e*x**2+d*x+c)/(b*x**4+a),x)
 

Output:

RootSum(256*_t**4*a**3*b**3 + _t**2*(64*a**2*b**2*c*e + 32*a**2*b**2*d**2) 
 + _t*(16*a**2*b*d*e**2 - 16*a*b**2*c**2*d) + a**2*e**4 + 2*a*b*c**2*e**2 
- 4*a*b*c*d**2*e + a*b*d**4 + b**2*c**4, Lambda(_t, _t*log(x + (64*_t**3*a 
**4*b**2*e**3 - 64*_t**3*a**3*b**3*c**2*e + 128*_t**3*a**3*b**3*c*d**2 + 4 
8*_t**2*a**3*b**2*c*d*e**2 - 32*_t**2*a**3*b**2*d**3*e + 16*_t**2*a**2*b** 
3*c**3*d + 12*_t*a**3*b*c*e**4 + 12*_t*a**3*b*d**2*e**3 - 16*_t*a**2*b**2* 
c**3*e**2 + 36*_t*a**2*b**2*c**2*d**2*e + 8*_t*a**2*b**2*c*d**4 + 4*_t*a*b 
**3*c**5 + 3*a**3*d*e**5 + 5*a**2*b*c*d**3*e**2 - 2*a**2*b*d**5*e + 5*a*b* 
*2*c**4*d*e - 5*a*b**2*c**3*d**3)/(a**3*e**6 - a**2*b*c**2*e**4 + 8*a**2*b 
*c*d**2*e**3 - 4*a**2*b*d**4*e**2 - a*b**2*c**4*e**2 + 8*a*b**2*c**3*d**2* 
e - 4*a*b**2*c**2*d**4 + b**3*c**6))))
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.22 \[ \int \frac {c+d x+e x^2}{a+b x^4} \, dx=\frac {\sqrt {2} {\left (\sqrt {b} c - \sqrt {a} e\right )} \log \left (\sqrt {b} x^{2} + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} b^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (\sqrt {b} c - \sqrt {a} e\right )} \log \left (\sqrt {b} x^{2} - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} b^{\frac {3}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {3}{4}} c + \sqrt {2} a^{\frac {3}{4}} b^{\frac {1}{4}} e - 2 \, \sqrt {a} \sqrt {b} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {b}} b^{\frac {3}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {3}{4}} c + \sqrt {2} a^{\frac {3}{4}} b^{\frac {1}{4}} e + 2 \, \sqrt {a} \sqrt {b} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {b}} b^{\frac {3}{4}}} \] Input:

integrate((e*x^2+d*x+c)/(b*x^4+a),x, algorithm="maxima")
 

Output:

1/8*sqrt(2)*(sqrt(b)*c - sqrt(a)*e)*log(sqrt(b)*x^2 + sqrt(2)*a^(1/4)*b^(1 
/4)*x + sqrt(a))/(a^(3/4)*b^(3/4)) - 1/8*sqrt(2)*(sqrt(b)*c - sqrt(a)*e)*l 
og(sqrt(b)*x^2 - sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(3/4)*b^(3/4)) + 
1/4*(sqrt(2)*a^(1/4)*b^(3/4)*c + sqrt(2)*a^(3/4)*b^(1/4)*e - 2*sqrt(a)*sqr 
t(b)*d)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x + sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sq 
rt(a)*sqrt(b)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(b))*b^(3/4)) + 1/4*(sqrt(2)*a^( 
1/4)*b^(3/4)*c + sqrt(2)*a^(3/4)*b^(1/4)*e + 2*sqrt(a)*sqrt(b)*d)*arctan(1 
/2*sqrt(2)*(2*sqrt(b)*x - sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/ 
(a^(3/4)*sqrt(sqrt(a)*sqrt(b))*b^(3/4))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 271, normalized size of antiderivative = 1.29 \[ \int \frac {c+d x+e x^2}{a+b x^4} \, dx=-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {a b} b^{2} d - \left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} - \frac {\sqrt {2} {\left (\sqrt {2} \sqrt {a b} b^{2} d - \left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} \] Input:

integrate((e*x^2+d*x+c)/(b*x^4+a),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

-1/4*sqrt(2)*(sqrt(2)*sqrt(a*b)*b^2*d - (a*b^3)^(1/4)*b^2*c - (a*b^3)^(3/4 
)*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^3) - 
 1/4*sqrt(2)*(sqrt(2)*sqrt(a*b)*b^2*d - (a*b^3)^(1/4)*b^2*c - (a*b^3)^(3/4 
)*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^3) + 
 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c - (a*b^3)^(3/4)*e)*log(x^2 + sqrt(2)*x*( 
a/b)^(1/4) + sqrt(a/b))/(a*b^3) - 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c - (a*b^ 
3)^(3/4)*e)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a*b^3)
 

Mupad [B] (verification not implemented)

Time = 6.36 (sec) , antiderivative size = 712, normalized size of antiderivative = 3.39 \[ \int \frac {c+d x+e x^2}{a+b x^4} \, dx=\sum _{k=1}^4\ln \left (b^2\,c\,d^2-b^2\,c^2\,e+b^2\,d^3\,x-a\,b\,e^3-{\mathrm {root}\left (256\,a^3\,b^3\,z^4+64\,a^2\,b^2\,c\,e\,z^2+32\,a^2\,b^2\,d^2\,z^2+16\,a^2\,b\,d\,e^2\,z-16\,a\,b^2\,c^2\,d\,z-4\,a\,b\,c\,d^2\,e+2\,a\,b\,c^2\,e^2+a\,b\,d^4+a^2\,e^4+b^2\,c^4,z,k\right )}^2\,a\,b^3\,c\,16-\mathrm {root}\left (256\,a^3\,b^3\,z^4+64\,a^2\,b^2\,c\,e\,z^2+32\,a^2\,b^2\,d^2\,z^2+16\,a^2\,b\,d\,e^2\,z-16\,a\,b^2\,c^2\,d\,z-4\,a\,b\,c\,d^2\,e+2\,a\,b\,c^2\,e^2+a\,b\,d^4+a^2\,e^4+b^2\,c^4,z,k\right )\,b^3\,c^2\,x\,4+{\mathrm {root}\left (256\,a^3\,b^3\,z^4+64\,a^2\,b^2\,c\,e\,z^2+32\,a^2\,b^2\,d^2\,z^2+16\,a^2\,b\,d\,e^2\,z-16\,a\,b^2\,c^2\,d\,z-4\,a\,b\,c\,d^2\,e+2\,a\,b\,c^2\,e^2+a\,b\,d^4+a^2\,e^4+b^2\,c^4,z,k\right )}^2\,a\,b^3\,d\,x\,16+\mathrm {root}\left (256\,a^3\,b^3\,z^4+64\,a^2\,b^2\,c\,e\,z^2+32\,a^2\,b^2\,d^2\,z^2+16\,a^2\,b\,d\,e^2\,z-16\,a\,b^2\,c^2\,d\,z-4\,a\,b\,c\,d^2\,e+2\,a\,b\,c^2\,e^2+a\,b\,d^4+a^2\,e^4+b^2\,c^4,z,k\right )\,a\,b^2\,e^2\,x\,4-\mathrm {root}\left (256\,a^3\,b^3\,z^4+64\,a^2\,b^2\,c\,e\,z^2+32\,a^2\,b^2\,d^2\,z^2+16\,a^2\,b\,d\,e^2\,z-16\,a\,b^2\,c^2\,d\,z-4\,a\,b\,c\,d^2\,e+2\,a\,b\,c^2\,e^2+a\,b\,d^4+a^2\,e^4+b^2\,c^4,z,k\right )\,a\,b^2\,d\,e\,8-2\,b^2\,c\,d\,e\,x\right )\,\mathrm {root}\left (256\,a^3\,b^3\,z^4+64\,a^2\,b^2\,c\,e\,z^2+32\,a^2\,b^2\,d^2\,z^2+16\,a^2\,b\,d\,e^2\,z-16\,a\,b^2\,c^2\,d\,z-4\,a\,b\,c\,d^2\,e+2\,a\,b\,c^2\,e^2+a\,b\,d^4+a^2\,e^4+b^2\,c^4,z,k\right ) \] Input:

int((c + d*x + e*x^2)/(a + b*x^4),x)
 

Output:

symsum(log(b^2*c*d^2 - b^2*c^2*e + b^2*d^3*x - a*b*e^3 - 16*root(256*a^3*b 
^3*z^4 + 64*a^2*b^2*c*e*z^2 + 32*a^2*b^2*d^2*z^2 + 16*a^2*b*d*e^2*z - 16*a 
*b^2*c^2*d*z - 4*a*b*c*d^2*e + 2*a*b*c^2*e^2 + a*b*d^4 + a^2*e^4 + b^2*c^4 
, z, k)^2*a*b^3*c - 4*root(256*a^3*b^3*z^4 + 64*a^2*b^2*c*e*z^2 + 32*a^2*b 
^2*d^2*z^2 + 16*a^2*b*d*e^2*z - 16*a*b^2*c^2*d*z - 4*a*b*c*d^2*e + 2*a*b*c 
^2*e^2 + a*b*d^4 + a^2*e^4 + b^2*c^4, z, k)*b^3*c^2*x + 16*root(256*a^3*b^ 
3*z^4 + 64*a^2*b^2*c*e*z^2 + 32*a^2*b^2*d^2*z^2 + 16*a^2*b*d*e^2*z - 16*a* 
b^2*c^2*d*z - 4*a*b*c*d^2*e + 2*a*b*c^2*e^2 + a*b*d^4 + a^2*e^4 + b^2*c^4, 
 z, k)^2*a*b^3*d*x + 4*root(256*a^3*b^3*z^4 + 64*a^2*b^2*c*e*z^2 + 32*a^2* 
b^2*d^2*z^2 + 16*a^2*b*d*e^2*z - 16*a*b^2*c^2*d*z - 4*a*b*c*d^2*e + 2*a*b* 
c^2*e^2 + a*b*d^4 + a^2*e^4 + b^2*c^4, z, k)*a*b^2*e^2*x - 8*root(256*a^3* 
b^3*z^4 + 64*a^2*b^2*c*e*z^2 + 32*a^2*b^2*d^2*z^2 + 16*a^2*b*d*e^2*z - 16* 
a*b^2*c^2*d*z - 4*a*b*c*d^2*e + 2*a*b*c^2*e^2 + a*b*d^4 + a^2*e^4 + b^2*c^ 
4, z, k)*a*b^2*d*e - 2*b^2*c*d*e*x)*root(256*a^3*b^3*z^4 + 64*a^2*b^2*c*e* 
z^2 + 32*a^2*b^2*d^2*z^2 + 16*a^2*b*d*e^2*z - 16*a*b^2*c^2*d*z - 4*a*b*c*d 
^2*e + 2*a*b*c^2*e^2 + a*b*d^4 + a^2*e^4 + b^2*c^4, z, k), k, 1, 4)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 353, normalized size of antiderivative = 1.68 \[ \int \frac {c+d x+e x^2}{a+b x^4} \, dx=\frac {-2 b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) e -2 b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) c -4 \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d +2 b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) e +2 b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) c -4 \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d +b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) e -b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) e -b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) c +b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) c}{8 a b} \] Input:

int((e*x^2+d*x+c)/(b*x^4+a),x)
 

Output:

( - 2*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b 
)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*e - 2*b**(3/4)*a**(1/4)*sqrt(2)*atan((b* 
*(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*c - 4* 
sqrt(b)*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a 
**(1/4)*sqrt(2)))*d + 2*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)* 
sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*e + 2*b**(3/4)*a**(1/4 
)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4 
)*sqrt(2)))*c - 4*sqrt(b)*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt 
(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*d + b**(1/4)*a**(3/4)*sqrt(2)*log( - b 
**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(b)*x**2)*e - b**(1/4)*a**(3/4) 
*sqrt(2)*log(b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(b)*x**2)*e - b** 
(3/4)*a**(1/4)*sqrt(2)*log( - b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt 
(b)*x**2)*c + b**(3/4)*a**(1/4)*sqrt(2)*log(b**(1/4)*a**(1/4)*sqrt(2)*x + 
sqrt(a) + sqrt(b)*x**2)*c)/(8*a*b)