\(\int x (a+b x^3)^2 (c+d x+e x^2+f x^3+g x^4+h x^5) \, dx\) [183]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 36, antiderivative size = 158 \[ \int x \left (a+b x^3\right )^2 \left (c+d x+e x^2+f x^3+g x^4+h x^5\right ) \, dx=\frac {1}{2} a^2 c x^2+\frac {1}{4} a^2 e x^4+\frac {1}{5} a (2 b c+a f) x^5+\frac {1}{6} a^2 g x^6+\frac {1}{7} a (2 b e+a h) x^7+\frac {1}{8} b (b c+2 a f) x^8+\frac {2}{9} a b g x^9+\frac {1}{10} b (b e+2 a h) x^{10}+\frac {1}{11} b^2 f x^{11}+\frac {1}{12} b^2 g x^{12}+\frac {1}{13} b^2 h x^{13}+\frac {d \left (a+b x^3\right )^3}{9 b} \] Output:

1/2*a^2*c*x^2+1/4*a^2*e*x^4+1/5*a*(a*f+2*b*c)*x^5+1/6*a^2*g*x^6+1/7*a*(a*h 
+2*b*e)*x^7+1/8*b*(2*a*f+b*c)*x^8+2/9*a*b*g*x^9+1/10*b*(2*a*h+b*e)*x^10+1/ 
11*b^2*f*x^11+1/12*b^2*g*x^12+1/13*b^2*h*x^13+1/9*d*(b*x^3+a)^3/b
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.03 \[ \int x \left (a+b x^3\right )^2 \left (c+d x+e x^2+f x^3+g x^4+h x^5\right ) \, dx=\frac {1}{2} a^2 c x^2+\frac {1}{3} a^2 d x^3+\frac {1}{4} a^2 e x^4+\frac {1}{5} a (2 b c+a f) x^5+\frac {1}{6} a (2 b d+a g) x^6+\frac {1}{7} a (2 b e+a h) x^7+\frac {1}{8} b (b c+2 a f) x^8+\frac {1}{9} b (b d+2 a g) x^9+\frac {1}{10} b (b e+2 a h) x^{10}+\frac {1}{11} b^2 f x^{11}+\frac {1}{12} b^2 g x^{12}+\frac {1}{13} b^2 h x^{13} \] Input:

Integrate[x*(a + b*x^3)^2*(c + d*x + e*x^2 + f*x^3 + g*x^4 + h*x^5),x]
 

Output:

(a^2*c*x^2)/2 + (a^2*d*x^3)/3 + (a^2*e*x^4)/4 + (a*(2*b*c + a*f)*x^5)/5 + 
(a*(2*b*d + a*g)*x^6)/6 + (a*(2*b*e + a*h)*x^7)/7 + (b*(b*c + 2*a*f)*x^8)/ 
8 + (b*(b*d + 2*a*g)*x^9)/9 + (b*(b*e + 2*a*h)*x^10)/10 + (b^2*f*x^11)/11 
+ (b^2*g*x^12)/12 + (b^2*h*x^13)/13
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {2017, 2389, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x \left (a+b x^3\right )^2 \left (c+d x+e x^2+f x^3+g x^4+h x^5\right ) \, dx\)

\(\Big \downarrow \) 2017

\(\displaystyle \int \left (b x^3+a\right )^2 \left (x \left (h x^5+g x^4+f x^3+e x^2+d x+c\right )-d x^2\right )dx+\frac {d \left (a+b x^3\right )^3}{9 b}\)

\(\Big \downarrow \) 2389

\(\displaystyle \int \left (b^2 h x^{12}+b^2 g x^{11}+b^2 f x^{10}+b (b e+2 a h) x^9+2 a b g x^8+b (b c+2 a f) x^7+a (2 b e+a h) x^6+a^2 g x^5+a (2 b c+a f) x^4+a^2 e x^3+a^2 c x\right )dx+\frac {d \left (a+b x^3\right )^3}{9 b}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} a^2 c x^2+\frac {1}{4} a^2 e x^4+\frac {1}{6} a^2 g x^6+\frac {1}{8} b x^8 (2 a f+b c)+\frac {1}{5} a x^5 (a f+2 b c)+\frac {d \left (a+b x^3\right )^3}{9 b}+\frac {1}{10} b x^{10} (2 a h+b e)+\frac {1}{7} a x^7 (a h+2 b e)+\frac {2}{9} a b g x^9+\frac {1}{11} b^2 f x^{11}+\frac {1}{12} b^2 g x^{12}+\frac {1}{13} b^2 h x^{13}\)

Input:

Int[x*(a + b*x^3)^2*(c + d*x + e*x^2 + f*x^3 + g*x^4 + h*x^5),x]
 

Output:

(a^2*c*x^2)/2 + (a^2*e*x^4)/4 + (a*(2*b*c + a*f)*x^5)/5 + (a^2*g*x^6)/6 + 
(a*(2*b*e + a*h)*x^7)/7 + (b*(b*c + 2*a*f)*x^8)/8 + (2*a*b*g*x^9)/9 + (b*( 
b*e + 2*a*h)*x^10)/10 + (b^2*f*x^11)/11 + (b^2*g*x^12)/12 + (b^2*h*x^13)/1 
3 + (d*(a + b*x^3)^3)/(9*b)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2017
Int[(Px_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[Coeff[Px, x, n - 
 1]*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] + Int[(Px - Coeff[Px, x, n - 1] 
*x^(n - 1))*(a + b*x^n)^p, x] /; FreeQ[{a, b}, x] && PolyQ[Px, x] && IGtQ[p 
, 1] && IGtQ[n, 1] && NeQ[Coeff[Px, x, n - 1], 0] && NeQ[Px, Coeff[Px, x, n 
 - 1]*x^(n - 1)] &&  !MatchQ[Px, (Qx_.)*((c_) + (d_.)*x^(m_))^(q_) /; FreeQ 
[{c, d}, x] && PolyQ[Qx, x] && IGtQ[q, 1] && IGtQ[m, 1] && NeQ[Coeff[Qx*(a 
+ b*x^n)^p, x, m - 1], 0] && GtQ[m*q, n*p]]
 

rule 2389
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand 
[Pq*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p 
, 0] || EqQ[n, 1])
 
Maple [A] (verified)

Time = 1.34 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.96

method result size
default \(\frac {b^{2} h \,x^{13}}{13}+\frac {b^{2} g \,x^{12}}{12}+\frac {b^{2} f \,x^{11}}{11}+\frac {\left (2 a b h +e \,b^{2}\right ) x^{10}}{10}+\frac {\left (2 a b g +b^{2} d \right ) x^{9}}{9}+\frac {\left (2 a b f +b^{2} c \right ) x^{8}}{8}+\frac {\left (a^{2} h +2 a b e \right ) x^{7}}{7}+\frac {\left (a^{2} g +2 d a b \right ) x^{6}}{6}+\frac {\left (f \,a^{2}+2 a b c \right ) x^{5}}{5}+\frac {a^{2} e \,x^{4}}{4}+\frac {a^{2} d \,x^{3}}{3}+\frac {a^{2} c \,x^{2}}{2}\) \(152\)
norman \(\frac {b^{2} h \,x^{13}}{13}+\frac {b^{2} g \,x^{12}}{12}+\frac {b^{2} f \,x^{11}}{11}+\left (\frac {1}{5} a b h +\frac {1}{10} e \,b^{2}\right ) x^{10}+\left (\frac {2}{9} a b g +\frac {1}{9} b^{2} d \right ) x^{9}+\left (\frac {1}{4} a b f +\frac {1}{8} b^{2} c \right ) x^{8}+\left (\frac {1}{7} a^{2} h +\frac {2}{7} a b e \right ) x^{7}+\left (\frac {1}{6} a^{2} g +\frac {1}{3} d a b \right ) x^{6}+\left (\frac {1}{5} f \,a^{2}+\frac {2}{5} a b c \right ) x^{5}+\frac {a^{2} e \,x^{4}}{4}+\frac {a^{2} d \,x^{3}}{3}+\frac {a^{2} c \,x^{2}}{2}\) \(152\)
gosper \(\frac {1}{13} b^{2} h \,x^{13}+\frac {1}{12} b^{2} g \,x^{12}+\frac {1}{11} b^{2} f \,x^{11}+\frac {1}{5} x^{10} a b h +\frac {1}{10} e \,b^{2} x^{10}+\frac {2}{9} a b g \,x^{9}+\frac {1}{9} b^{2} d \,x^{9}+\frac {1}{4} a b f \,x^{8}+\frac {1}{8} b^{2} c \,x^{8}+\frac {1}{7} x^{7} a^{2} h +\frac {2}{7} a b e \,x^{7}+\frac {1}{6} a^{2} g \,x^{6}+\frac {1}{3} a b d \,x^{6}+\frac {1}{5} x^{5} f \,a^{2}+\frac {2}{5} a b c \,x^{5}+\frac {1}{4} a^{2} e \,x^{4}+\frac {1}{3} a^{2} d \,x^{3}+\frac {1}{2} a^{2} c \,x^{2}\) \(158\)
risch \(\frac {1}{13} b^{2} h \,x^{13}+\frac {1}{12} b^{2} g \,x^{12}+\frac {1}{11} b^{2} f \,x^{11}+\frac {1}{5} x^{10} a b h +\frac {1}{10} e \,b^{2} x^{10}+\frac {2}{9} a b g \,x^{9}+\frac {1}{9} b^{2} d \,x^{9}+\frac {1}{4} a b f \,x^{8}+\frac {1}{8} b^{2} c \,x^{8}+\frac {1}{7} x^{7} a^{2} h +\frac {2}{7} a b e \,x^{7}+\frac {1}{6} a^{2} g \,x^{6}+\frac {1}{3} a b d \,x^{6}+\frac {1}{5} x^{5} f \,a^{2}+\frac {2}{5} a b c \,x^{5}+\frac {1}{4} a^{2} e \,x^{4}+\frac {1}{3} a^{2} d \,x^{3}+\frac {1}{2} a^{2} c \,x^{2}\) \(158\)
parallelrisch \(\frac {1}{13} b^{2} h \,x^{13}+\frac {1}{12} b^{2} g \,x^{12}+\frac {1}{11} b^{2} f \,x^{11}+\frac {1}{5} x^{10} a b h +\frac {1}{10} e \,b^{2} x^{10}+\frac {2}{9} a b g \,x^{9}+\frac {1}{9} b^{2} d \,x^{9}+\frac {1}{4} a b f \,x^{8}+\frac {1}{8} b^{2} c \,x^{8}+\frac {1}{7} x^{7} a^{2} h +\frac {2}{7} a b e \,x^{7}+\frac {1}{6} a^{2} g \,x^{6}+\frac {1}{3} a b d \,x^{6}+\frac {1}{5} x^{5} f \,a^{2}+\frac {2}{5} a b c \,x^{5}+\frac {1}{4} a^{2} e \,x^{4}+\frac {1}{3} a^{2} d \,x^{3}+\frac {1}{2} a^{2} c \,x^{2}\) \(158\)
orering \(\frac {x^{2} \left (27720 b^{2} h \,x^{11}+30030 b^{2} g \,x^{10}+32760 f \,x^{9} b^{2}+72072 a b h \,x^{8}+36036 b^{2} e \,x^{8}+80080 a b g \,x^{7}+40040 b^{2} d \,x^{7}+90090 a b f \,x^{6}+45045 b^{2} c \,x^{6}+51480 a^{2} h \,x^{5}+102960 a b e \,x^{5}+60060 a^{2} g \,x^{4}+120120 a b d \,x^{4}+72072 a^{2} f \,x^{3}+144144 a b c \,x^{3}+90090 a^{2} e \,x^{2}+120120 a^{2} d x +180180 a^{2} c \right )}{360360}\) \(158\)

Input:

int(x*(b*x^3+a)^2*(h*x^5+g*x^4+f*x^3+e*x^2+d*x+c),x,method=_RETURNVERBOSE)
 

Output:

1/13*b^2*h*x^13+1/12*b^2*g*x^12+1/11*b^2*f*x^11+1/10*(2*a*b*h+b^2*e)*x^10+ 
1/9*(2*a*b*g+b^2*d)*x^9+1/8*(2*a*b*f+b^2*c)*x^8+1/7*(a^2*h+2*a*b*e)*x^7+1/ 
6*(a^2*g+2*a*b*d)*x^6+1/5*(a^2*f+2*a*b*c)*x^5+1/4*a^2*e*x^4+1/3*a^2*d*x^3+ 
1/2*a^2*c*x^2
 

Fricas [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.96 \[ \int x \left (a+b x^3\right )^2 \left (c+d x+e x^2+f x^3+g x^4+h x^5\right ) \, dx=\frac {1}{13} \, b^{2} h x^{13} + \frac {1}{12} \, b^{2} g x^{12} + \frac {1}{11} \, b^{2} f x^{11} + \frac {1}{10} \, {\left (b^{2} e + 2 \, a b h\right )} x^{10} + \frac {1}{9} \, {\left (b^{2} d + 2 \, a b g\right )} x^{9} + \frac {1}{8} \, {\left (b^{2} c + 2 \, a b f\right )} x^{8} + \frac {1}{7} \, {\left (2 \, a b e + a^{2} h\right )} x^{7} + \frac {1}{4} \, a^{2} e x^{4} + \frac {1}{6} \, {\left (2 \, a b d + a^{2} g\right )} x^{6} + \frac {1}{3} \, a^{2} d x^{3} + \frac {1}{5} \, {\left (2 \, a b c + a^{2} f\right )} x^{5} + \frac {1}{2} \, a^{2} c x^{2} \] Input:

integrate(x*(b*x^3+a)^2*(h*x^5+g*x^4+f*x^3+e*x^2+d*x+c),x, algorithm="fric 
as")
 

Output:

1/13*b^2*h*x^13 + 1/12*b^2*g*x^12 + 1/11*b^2*f*x^11 + 1/10*(b^2*e + 2*a*b* 
h)*x^10 + 1/9*(b^2*d + 2*a*b*g)*x^9 + 1/8*(b^2*c + 2*a*b*f)*x^8 + 1/7*(2*a 
*b*e + a^2*h)*x^7 + 1/4*a^2*e*x^4 + 1/6*(2*a*b*d + a^2*g)*x^6 + 1/3*a^2*d* 
x^3 + 1/5*(2*a*b*c + a^2*f)*x^5 + 1/2*a^2*c*x^2
 

Sympy [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.06 \[ \int x \left (a+b x^3\right )^2 \left (c+d x+e x^2+f x^3+g x^4+h x^5\right ) \, dx=\frac {a^{2} c x^{2}}{2} + \frac {a^{2} d x^{3}}{3} + \frac {a^{2} e x^{4}}{4} + \frac {b^{2} f x^{11}}{11} + \frac {b^{2} g x^{12}}{12} + \frac {b^{2} h x^{13}}{13} + x^{10} \left (\frac {a b h}{5} + \frac {b^{2} e}{10}\right ) + x^{9} \cdot \left (\frac {2 a b g}{9} + \frac {b^{2} d}{9}\right ) + x^{8} \left (\frac {a b f}{4} + \frac {b^{2} c}{8}\right ) + x^{7} \left (\frac {a^{2} h}{7} + \frac {2 a b e}{7}\right ) + x^{6} \left (\frac {a^{2} g}{6} + \frac {a b d}{3}\right ) + x^{5} \left (\frac {a^{2} f}{5} + \frac {2 a b c}{5}\right ) \] Input:

integrate(x*(b*x**3+a)**2*(h*x**5+g*x**4+f*x**3+e*x**2+d*x+c),x)
 

Output:

a**2*c*x**2/2 + a**2*d*x**3/3 + a**2*e*x**4/4 + b**2*f*x**11/11 + b**2*g*x 
**12/12 + b**2*h*x**13/13 + x**10*(a*b*h/5 + b**2*e/10) + x**9*(2*a*b*g/9 
+ b**2*d/9) + x**8*(a*b*f/4 + b**2*c/8) + x**7*(a**2*h/7 + 2*a*b*e/7) + x* 
*6*(a**2*g/6 + a*b*d/3) + x**5*(a**2*f/5 + 2*a*b*c/5)
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.96 \[ \int x \left (a+b x^3\right )^2 \left (c+d x+e x^2+f x^3+g x^4+h x^5\right ) \, dx=\frac {1}{13} \, b^{2} h x^{13} + \frac {1}{12} \, b^{2} g x^{12} + \frac {1}{11} \, b^{2} f x^{11} + \frac {1}{10} \, {\left (b^{2} e + 2 \, a b h\right )} x^{10} + \frac {1}{9} \, {\left (b^{2} d + 2 \, a b g\right )} x^{9} + \frac {1}{8} \, {\left (b^{2} c + 2 \, a b f\right )} x^{8} + \frac {1}{7} \, {\left (2 \, a b e + a^{2} h\right )} x^{7} + \frac {1}{4} \, a^{2} e x^{4} + \frac {1}{6} \, {\left (2 \, a b d + a^{2} g\right )} x^{6} + \frac {1}{3} \, a^{2} d x^{3} + \frac {1}{5} \, {\left (2 \, a b c + a^{2} f\right )} x^{5} + \frac {1}{2} \, a^{2} c x^{2} \] Input:

integrate(x*(b*x^3+a)^2*(h*x^5+g*x^4+f*x^3+e*x^2+d*x+c),x, algorithm="maxi 
ma")
 

Output:

1/13*b^2*h*x^13 + 1/12*b^2*g*x^12 + 1/11*b^2*f*x^11 + 1/10*(b^2*e + 2*a*b* 
h)*x^10 + 1/9*(b^2*d + 2*a*b*g)*x^9 + 1/8*(b^2*c + 2*a*b*f)*x^8 + 1/7*(2*a 
*b*e + a^2*h)*x^7 + 1/4*a^2*e*x^4 + 1/6*(2*a*b*d + a^2*g)*x^6 + 1/3*a^2*d* 
x^3 + 1/5*(2*a*b*c + a^2*f)*x^5 + 1/2*a^2*c*x^2
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.99 \[ \int x \left (a+b x^3\right )^2 \left (c+d x+e x^2+f x^3+g x^4+h x^5\right ) \, dx=\frac {1}{13} \, b^{2} h x^{13} + \frac {1}{12} \, b^{2} g x^{12} + \frac {1}{11} \, b^{2} f x^{11} + \frac {1}{10} \, b^{2} e x^{10} + \frac {1}{5} \, a b h x^{10} + \frac {1}{9} \, b^{2} d x^{9} + \frac {2}{9} \, a b g x^{9} + \frac {1}{8} \, b^{2} c x^{8} + \frac {1}{4} \, a b f x^{8} + \frac {2}{7} \, a b e x^{7} + \frac {1}{7} \, a^{2} h x^{7} + \frac {1}{3} \, a b d x^{6} + \frac {1}{6} \, a^{2} g x^{6} + \frac {2}{5} \, a b c x^{5} + \frac {1}{5} \, a^{2} f x^{5} + \frac {1}{4} \, a^{2} e x^{4} + \frac {1}{3} \, a^{2} d x^{3} + \frac {1}{2} \, a^{2} c x^{2} \] Input:

integrate(x*(b*x^3+a)^2*(h*x^5+g*x^4+f*x^3+e*x^2+d*x+c),x, algorithm="giac 
")
 

Output:

1/13*b^2*h*x^13 + 1/12*b^2*g*x^12 + 1/11*b^2*f*x^11 + 1/10*b^2*e*x^10 + 1/ 
5*a*b*h*x^10 + 1/9*b^2*d*x^9 + 2/9*a*b*g*x^9 + 1/8*b^2*c*x^8 + 1/4*a*b*f*x 
^8 + 2/7*a*b*e*x^7 + 1/7*a^2*h*x^7 + 1/3*a*b*d*x^6 + 1/6*a^2*g*x^6 + 2/5*a 
*b*c*x^5 + 1/5*a^2*f*x^5 + 1/4*a^2*e*x^4 + 1/3*a^2*d*x^3 + 1/2*a^2*c*x^2
 

Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.96 \[ \int x \left (a+b x^3\right )^2 \left (c+d x+e x^2+f x^3+g x^4+h x^5\right ) \, dx=x^5\,\left (\frac {f\,a^2}{5}+\frac {2\,b\,c\,a}{5}\right )+x^8\,\left (\frac {c\,b^2}{8}+\frac {a\,f\,b}{4}\right )+x^6\,\left (\frac {g\,a^2}{6}+\frac {b\,d\,a}{3}\right )+x^9\,\left (\frac {d\,b^2}{9}+\frac {2\,a\,g\,b}{9}\right )+x^7\,\left (\frac {h\,a^2}{7}+\frac {2\,b\,e\,a}{7}\right )+x^{10}\,\left (\frac {e\,b^2}{10}+\frac {a\,h\,b}{5}\right )+\frac {a^2\,c\,x^2}{2}+\frac {a^2\,d\,x^3}{3}+\frac {a^2\,e\,x^4}{4}+\frac {b^2\,f\,x^{11}}{11}+\frac {b^2\,g\,x^{12}}{12}+\frac {b^2\,h\,x^{13}}{13} \] Input:

int(x*(a + b*x^3)^2*(c + d*x + e*x^2 + f*x^3 + g*x^4 + h*x^5),x)
 

Output:

x^5*((a^2*f)/5 + (2*a*b*c)/5) + x^8*((b^2*c)/8 + (a*b*f)/4) + x^6*((a^2*g) 
/6 + (a*b*d)/3) + x^9*((b^2*d)/9 + (2*a*b*g)/9) + x^7*((a^2*h)/7 + (2*a*b* 
e)/7) + x^10*((b^2*e)/10 + (a*b*h)/5) + (a^2*c*x^2)/2 + (a^2*d*x^3)/3 + (a 
^2*e*x^4)/4 + (b^2*f*x^11)/11 + (b^2*g*x^12)/12 + (b^2*h*x^13)/13
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.99 \[ \int x \left (a+b x^3\right )^2 \left (c+d x+e x^2+f x^3+g x^4+h x^5\right ) \, dx=\frac {x^{2} \left (27720 b^{2} h \,x^{11}+30030 b^{2} g \,x^{10}+32760 b^{2} f \,x^{9}+72072 a b h \,x^{8}+36036 b^{2} e \,x^{8}+80080 a b g \,x^{7}+40040 b^{2} d \,x^{7}+90090 a b f \,x^{6}+45045 b^{2} c \,x^{6}+51480 a^{2} h \,x^{5}+102960 a b e \,x^{5}+60060 a^{2} g \,x^{4}+120120 a b d \,x^{4}+72072 a^{2} f \,x^{3}+144144 a b c \,x^{3}+90090 a^{2} e \,x^{2}+120120 a^{2} d x +180180 a^{2} c \right )}{360360} \] Input:

int(x*(b*x^3+a)^2*(h*x^5+g*x^4+f*x^3+e*x^2+d*x+c),x)
 

Output:

(x**2*(180180*a**2*c + 120120*a**2*d*x + 90090*a**2*e*x**2 + 72072*a**2*f* 
x**3 + 60060*a**2*g*x**4 + 51480*a**2*h*x**5 + 144144*a*b*c*x**3 + 120120* 
a*b*d*x**4 + 102960*a*b*e*x**5 + 90090*a*b*f*x**6 + 80080*a*b*g*x**7 + 720 
72*a*b*h*x**8 + 45045*b**2*c*x**6 + 40040*b**2*d*x**7 + 36036*b**2*e*x**8 
+ 32760*b**2*f*x**9 + 30030*b**2*g*x**10 + 27720*b**2*h*x**11))/360360